

Designation: B 209 - 06

Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate¹

This standard is issued under the fixed designation B 209; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (ϵ) indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1. Scope*

- 1.1 This specification² covers aluminum and aluminumalloy flat sheet, coiled sheet, and plate in the alloys (Note 1) and tempers shown in Tables 2 and 3, and in the following finishes:
- 1.1.1 Plate in all alloys and sheet in heat-treatable alloys: mill finish.
- 1.1.2 Sheet in nonheat-treatable alloys: mill finish, one-side bright mill finish, standard one-side bright finish, and standard two-sides bright finish.

Note 1—Throughout this specification, use of the term *alloy* in the general sense includes aluminum as well as aluminum alloy.

Note 2—See Specification B 632/B 632M for tread plate.

Note 3—See Specification B 928/B 928M for marine sheet and plate. Due to additional corrosion testing required, it is not intended that Specification B 209 be used for marine sheet and plate.

- 1.2 Alloy and temper designations are in accordance with ANSI H35.1/H35.1(M). The equivalent Unified Numbering System alloy designations are those of Table 1 preceded by A9, for example, A91100 for aluminum 1100 in accordance with Practice E 527.
- 1.3 A complete metric companion to Specification B 209 has been developed—Specification B 209M; therefore, no metric equivalents are presented in this specification.
- 1.4 For acceptance criteria for inclusion of new aluminum and aluminum alloys in this specification, see Annex A2.

2. Referenced Documents

- 2.1 The following documents form a part of this specification to the extent referenced herein:
 - 2.2 ASTM Standards: ³
 - B 548 Test Method for Ultrasonic Inspection of Aluminum-

Alloy Plate for Pressure Vessels

- B 557 Test Methods for Tension Testing Wrought and Cast Aluminum- and Magnesium-Alloy Products
- B 594 Practice for Ultrasonic Inspection of Aluminum-Alloy Wrought Products for Aerospace Applications
- B 632/B 632M Specification for Aluminum-Alloy Rolled Tread Plate
- B 660 Practices for Packaging/Packing of Aluminum and Magnesium Products
- B 666/B 666M Practice for Identification Marking of Aluminum and Magnesium Products
- B 881 Terminology Relating to Aluminum- and Magnesium-Alloy Products
- B 918 Practice for Heat Treatment of Wrought Aluminum Alloys
- B 928/B 928M Specification for High Magnesium Aluminum-Alloy Sheet and Plate for Marine Service and Similar Environments
- B 947 Practice for Hot Rolling Mill Solution Heat Treatment for Aluminum Alloy Plate
- E 29 Practice for Using Significant Digits in Test Data to Determine Conformance with Specifications
- E 34 Test Methods for Chemical Analysis of Aluminum and Aluminum-Base Alloys
- E 55 Practice for Sampling Wrought Nonferrous Metals and Alloys for Determination of Chemical Composition
- E 290 Test Methods for Bend Testing of Material for Ductility
- E 527 Practice for Numbering Metals and Alloys (UNS)
- E 607 Test Method for Atomic Emission Spectrometric Analysis Aluminum Alloys by the Point to Plane Technique Nitrogen Atmosphere
- E 716 Practices for Sampling Aluminum and Aluminum Alloys for Spectrochemical Analysis
- E 1004 Practice for Determining Electrical Conductivity Using the Electromagnetic (Eddy-Current) Method
- E 1251 Test Method for Analysis of Aluminum and Aluminum Alloys by Atomic Emission Spectrometry
- G34 Test Method for Exfoliation Corrosion Susceptibility in 2xxx and 7xxx Series Aluminum Alloys (EXCO Test)⁴

¹ This specification is under the jurisdiction of ASTM Committee B07 on Light Metals and Alloys and is the direct responsibility of Subcommittee B07.03 on Aluminum Alloy Wrought Products.

Current edition approved July 1, 2006. Published July 2006. Originally approved in 1946. Last previous edition approved in 2004 as $B\ 209-04$.

² For ASME Boiler and Pressure Vessel Code applications see related Specification SB-209 in Section II of that Code.

³ For referenced ASTM standards, visit the ASTM website, www.astm.org, or contact ASTM Customer Service at service@astm.org. For *Annual Book of ASTM Standards* volume information, refer to the standard's Document Summary page on the ASTM website.

⁴ The applicable edition in the use of this specification is G 34–72—formerly available in the gray pages of the *Annual Book of ASTM Standards*, Vol 02.02.

- G47 Test Method for Determining Susceptibility to Stress-Corrosion Cracking of 2xxx and 7xxx Aluminum Alloy Products
- 2.3 ANSI Standards:⁵
- H35.1/H35.1(M) Alloy and Temper Designation Systems for Aluminum

H35.2 Dimensional Tolerances for Aluminum Mill Products 2.4 *AMS Specification:*⁶

AMS 2772 Heat Treatment of Aluminum Alloy Raw Materials

3. Terminology

- 3.1 *Definitions*—Refer to Terminology B 881 for definitions of product terms used in this specification.
 - 3.2 Definitions of Terms Specific to This Standard:
- 3.2.1 capable of—The term capable of, as used in this specification, means that the test need not be performed by the producer of the material. However, should testing by the purchaser establish that the material does not meet these requirements, the material shall be subject to rejection.

4. Ordering Information

- 4.1 Orders for material to this specification shall include the following information:
- 4.1.1 This specification designation (which includes the number, the year, and the revision letter, if applicable),
 - 4.1.2 Quantity in pieces or pounds,
 - 4.1.3 Alloy (7.1),
 - 4.1.4 Temper (9.1),
- 4.1.5 Finish for sheet in nonheat-treatable alloys (Section 1),
 - 4.1.6 For sheet, whether flat or coiled,
 - 4.1.7 Dimensions (thickness, width, and length or coil size),
- 4.1.8 Tensile property limits and dimensional tolerances for sizes not covered in Table 2 or Table 3 of this specification and in ANSI H35.2, respectively.
- 4.2 Additionally, orders for material meeting the requirements of this specification shall include the following information when required by the purchaser:
- 4.2.1 Whether a supply of one of the pairs of tempers where shown in Table 2, (H14 or H24) or (H34 or H24), is specifically excluded (Table 2, Footnote *D*),
- 4.2.2 Whether heat treatment in accordance with Practice B 918 is required (8.2),
 - 4.2.3 Whether bend tests are required (12.1),
- 4.2.4 Whether testing for stress-corrosion cracking resistance of alloy 2124-T851 is required (13.1),
- 4.2.5 Whether ultrasonic inspection for aerospace or pressure vessels applications is required (Section 17),
- 4.2.6 Whether inspection or witness of inspection and tests by the purchaser's representative is required prior to material shipment (18.1),
 - 4.2.7 Whether certification is required (Section 22),

- 4.2.8 Whether marking for identification is required (20.1),
- 4.2.9 Whether Practices B 660 applies and, if so, the levels of preservation, packaging, and packing required (21.3).

5. Responsibility for Quality Assurance

- 5.1 Responsibility for Inspection and Tests—Unless otherwise specified in the contract or purchase order, the producer is responsible for the performance of all inspection and test requirements specified herein. The producer may use his own or any other suitable facilities for the performance of the inspection and test requirements specified herein, unless disapproved by the purchaser in the order or at the time of contract signing. The purchaser shall have the right to perform any of the inspections and tests set forth in this specification where such inspections are deemed necessary to ensure that material conforms to prescribed requirements.
- 5.2 Lot Definition—An inspection lot shall be defined as follows:
- 5.2.1 For heat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness traceable to a heat-treat lot or lots, and subjected to inspection at one time.
- 5.2.2 For nonheat-treated tempers, an inspection lot shall consist of an identifiable quantity of material of the same mill form, alloy, temper, and thickness subjected to inspection at one time.

6. General Quality

- 6.1 Unless otherwise specified, the material shall be supplied in the mill finish and shall be uniform as defined by the requirements of this specification and shall be commercially sound. Any requirement not covered is subject to negotiation between producer and purchaser.
- 6.2 Each sheet and plate shall be examined to determine conformance to this specification with respect to general quality and identification marking. On approval of the purchaser, however, the producer may use a system of statistical quality control for such examinations.

7. Chemical Composition

7.1 *Limits*—The sheet and plate shall conform to the chemical composition limits specified in Table 1. Conformance shall be determined by the producer by analyzing samples taken at the time the ingots are cast, or samples taken from the finished or semifinished product. If the producer has determined the chemical composition of the material during the course of manufacture, additional sampling and analysis of the finished product shall not be required.

Note 4—It is standard practice in the United States aluminum industry to determine conformance to the chemical composition limits prior to further processing of ingots into wrought products. Due to the continuous nature of the process, it is not practical to keep a specific ingot analysis identified with a specific quantity of finished material.

- 7.2 Number of Samples—The number of samples taken for the determination of chemical composition shall be as follows:
- 7.2.1 When samples are taken at the time the ingots are cast, at least one sample shall be taken for each group of ingots cast simultaneously from the same source of molten metal.

⁵ Available in the Related Materials section (gray pages) of the Annual Book of ASTM Standards, Vol 02.02.

⁶ Available from Society of Automotive Engineers (SAE), 400 Commonwealth Dr., Warrendale, PA 15096-0001.

TABLE 1 Chemical Composition Limits^{A,B,C}

Alley	Silicon	Iron	Copper	Manganese	Magnesium	Chromium	Zinc	Titanium	Other E	lements ^D	Aluminum
Alloy									Each	Total ^E	
1060	0.25	0.35	0.05	0.03	0.03		0.05	0.03	0.03 ^F		99.60 min ^G
1100		Si + Fe	0.05-0.20	0.05			0.10		0.05	0.15	99.00 min ^G
1230 ^H	0.70 5	Si + Fe	0.10	0.05	0.05		0.10	0.03	0.03^{F}		99.30 min ^G
2014	0.50-1.2	0.7	3.9-5.0	0.40-1.2	0.20-0.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2014					201	4 clad with 60					
2024	0.50	0.50	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
Alclad 2024					202	4 clad with 12					
2124	0.20	0.30	3.8-4.9	0.30-0.9	1.2-1.8	0.10	0.25	0.15	0.05	0.15	remainder
2219	0.20	0.30	5.8-6.8	0.20-0.40	0.02		0.10	0.02-0.10	0.05	0.15	remainder
Alclad 2219						9 clad with 70					
3003	0.6	0.7	0.05-0.20	1.0-1.5			0.10		0.05	0.15	remainder
Alclad 3003						3 clad with 70					
3004	0.30	0.7	0.25	1.0-1.5	0.8-1.3		0.25		0.05	0.15	remainder
Alclad 3004					300	4 clad with 70					
3005	0.6	0.7	0.30	1.0-1.5	0.20-0.6	0.10	0.25	0.10	0.05	0.15	remainder
3105	0.6	0.7	0.30	0.30-0.8	0.20-0.8	0.20	0.40	0.10	0.05	0.15	remainder
5005	0.30	0.7	0.20	0.20	0.50-1.1	0.10	0.25		0.05	0.15	remainder
5010	0.40	0.7	0.25	0.10-0.30	0.20-0.6	0.15	0.30	0.10	0.05	0.15	remainder
5050	0.40	0.7	0.20	0.10	1.1–1.8	0.10	0.25		0.05	0.15	remainder
5052	0.25	0.40	0.10	0.10	2.2–2.8	0.15-0.35	0.10		0.05	0.15	remainder
5059	0.45	0.50	0.25	0.6–1.2	5.0-6.0	0.25	0.40-0.9	0.20	0.05 ^J	0.15	remainder
5083	0.40	0.40	0.10	0.40-1.0	4.0–4.9	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5086	0.40	0.50	0.10	0.20-0.7	3.5–4.5	0.05-0.25	0.25	0.15	0.05	0.15	remainder
5154	0.25	0.40	0.10	0.10	3.1–3.9	0.15-0.35	0.20	0.20	0.05	0.15	remainder
5252	0.08	0.10	0.10	0.10	2.2–2.8		0.05		0.03 ^F	0.10 ^F	remainder
5254		Si + Fe	0.05	0.01	3.1–3.9	0.15-0.35	0.20	0.05	0.05	0.15	remainder
5454	0.25	0.40	0.10	0.50-1.0	2.4–3.0	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5456	0.25	0.40	0.10	0.50-1.0	4.7–5.5	0.05-0.20	0.25	0.20	0.05	0.15	remainder
5457	0.08	0.10	0.20	0.15-0.45	0.8–1.2		0.05		0.03 ^F	0.10 ^F	remainder
5652		Si + Fe	0.04	0.01	2.2–2.8	0.15-0.35	0.10		0.05	0.15	remainder
5657	0.08	0.10	0.10	0.03	0.6–1.0		0.05		0.02 ^K	0.05 ^K	remainder
5754	0.40	0.40	0.10	0.50 ^L	2.6-3.6	0.30 ^L	0.20	0.15	0.05	0.15	remainder
6003 ^H	0.35–1.0	0.6	0.10	0.8	0.8–1.5	0.35	0.20	0.10	0.05	0.15	remainder
6013	0.6–1.0	0.50	0.6–1.1	0.20-0.8	0.8–1.2	0.10	0.25	0.10	0.05	0.15	remainder
6061	0.40-0.8	0.7	0.15-0.40	0.15	0.8–1.2	0.04-0.35	0.25	0.15	0.05	0.15	remainder
Alclad 6061	0.40 0.0	0.7	0.10 0.40	0.10		1 clad with 70		0.10	0.00	0.10	remainaci
7008 ^H	0.10	0.10	0.05	0.05	0.7–1.4	0.12-0.25	4.5–5.5	0.05	0.05	0.10	remainder
7008 7072 ^H		i + Fe	0.03	0.03	0.7-1.4	0.12-0.20	0.8–1.3	0.05	0.05	0.10	remainder
7072 7075	0.40	0.50	1.2–2.0	0.10	2.1–2.9	0.18-0.28	5.1–6.1	0.20	0.05	0.15	remainder
Alclad 7075	0.40	0.50	1.2-2.0	0.50		5 clad with 70		0.20	0.03	0.15	remainder
7008 Alclad 7075						5 clad with 70					
7178	0.40	0.50	1.6-2.4	0.30	2.4–3.1	0.18–0.28	6.3–7.3	0.20	0.05	0.15	remainder
Alclad 7178	0.40	0.50	1.0-2.4	0.30		0.16-0.28 8 clad with 70		0.20	0.05	0.15	remainuel

^A Limits are in weight percent maximum unless shown as a range or stated otherwise.

- 7.2.2 When samples are taken from the finished or semifinished product, a sample shall be taken to represent each 4000 lb, or fraction thereof, of material in the lot, except that not more than one sample shall be required per piece.
- 7.3 Methods of Sampling—Samples for determination of chemical composition shall be taken in accordance with one of the following methods:
- 7.3.1 Samples for chemical analysis shall be taken by drilling, sawing, milling, turning, or clipping a representative

piece or pieces to obtain a prepared sample of not less than 75 g. Sampling shall be in accordance with Practice E 55.

7.3.2 Sampling for spectrochemical analysis shall be in accordance with Practices E 716. Samples for other methods of analysis shall be suitable for the form of material being analyzed and the type of analytical method used.

Note 5—It is difficult to obtain a reliable analysis of each of the components of clad materials using material in its finished state. A

^B Analysis shall be made for the elements for which limits are shown in this table.

^C For purposes of determining conformance to these limits, an observed value or a calculated value attained from analysis shall be rounded to the nearest unit in the last righthand place of figures used in expressing the specified limit, in accordance with the rounding-off method of Practice E 29.

Dothers includes listed elements for which no specific limit is shown as well as unlisted metallic elements. The producer may analyze samples for trace elements not specified in the specification. However, such analysis is not required and may not cover all metallic Others elements. Should any analysis by the producer or the purchaser establish that an Others element exceeds the limit of Each or that the aggregate of several Others elements exceeds the limit of Total, the material shall be considered nonconforming.

E Other Elements—Total shall be the sum of unspecified metallic elements, 0.010 % or more, rounded to the second decimal before determining the sum.

F Vanadium 0.05 max. The total for other elements does not include vanadium.

^G The aluminum content shall be calculated by subtracting from 100.00 % the sum of all metallic elements present in amounts of 0.010 % or more each, rounded to the second decimal before determining the sum.

H Composition of cladding alloy as applied during the course of manufacture. Samples from finished sheet or plate shall not be required to conform to these limits.

¹ Vanadium 0.05–0.15, zirconium 0.10–0.25. The total for other elements does not include vanadium and zirconium.

^J0.05–0.25 Zr

^K Gallium 0.03 max, vanadium 0.05 max. The total for other elements does not include vanadium or gallium.

^L 0.10-0.6 Mn + Cr.

reasonably accurate determination of the core composition can be made if the cladding is substantially removed prior to analysis. The cladding composition is more difficult to determine because of the relatively thin layer and because of diffusion of core elements to the cladding. The correctness of cladding alloy used can usually be verified by a combination of metallographic examination and spectrochemical analysis of the surface at several widely separated points.

7.4 Methods of Analysis—The determination of chemical composition shall be made in accordance with suitable chemical (Test Methods E 34), or spectrochemical (Test Methods E 607 and E 1251) methods. Other methods may be used only when no published ASTM method is available. In case of dispute, the methods of analysis shall be agreed upon between the producer and purchaser.

8. Heat Treatment

- 8.1 Unless specified in 8.2 or except as noted in 8.3, producer or supplier heat treatment for the applicable tempers in Table 3 shall be in accordance with AMS 2772.
- 8.2 When specified, heat treatment of applicable tempers in Table 3 shall be in accordance with Practice B 918.
- 8.3 Alloy 6061 plate may be produced using hot rolling mill solution heat treatment in accordance with Practice B 947 when aged in accordance with Practice B 918 for the production of T6 type tempers, as applicable.

9. Tensile Properties of Material as Supplied

- 9.1 *Limits*—The sheet and plate shall conform to the requirements for tensile properties as specified in Table 2 and Table 3 for nonheat-treatable and heat-treatable alloys, respectively.
- 9.1.1 Tensile property limits for sizes not covered in Table 2 or Table 3 shall be as agreed upon between the producer and purchaser and shall be so specified in the contract or purchase order.
- 9.2 Number of Samples—One sample shall be taken from each end of each parent coil, or parent plate, but no more than one sample per 2000 lb of sheet or 4000 lb of plate, or part thereof, in a lot shall be required. Other procedures for selecting samples may be employed if agreed upon between the producer and purchaser.
- 9.3 *Test Specimens*—Geometry of test specimens and the location in the product from which they are taken shall be as specified in Test Methods B 557.
- 9.4 *Test Methods*—The tension test shall be made in accordance with Test Methods B 557.

10. Producer Confirmation of Heat-Treat Response

10.1 In addition to the requirements of 9.1, material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 shall, upon proper

solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.

- 10.2 Also, material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.
- 10.3 Mill-produced material in the O or F tempers of 7008 Alclad 7075 shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.
- 10.4 *Number of Specimens*—The number of specimens from each lot of O temper material and F temper material to be tested to verify conformance with 10.1-10.3 shall be as specified in 9.2.

11. Heat Treatment and Reheat-Treatment Capability

- 11.1 Mill-produced material in the O or F temper of alloys 2014, Alclad 2014, 2024, Alclad 2024, 1½ % Alclad 2024, Alclad one-side 2024, 1½ % Alclad one-side 2024, 6061, and Alclad 6061 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and natural aging at room temperature, develop the properties specified in Table 3 for T42 temper material. The natural aging period at room temperature shall be not less than 4 days, but samples of material may be tested prior to 4 days aging, and if the material fails to conform to the requirements of T42 temper material, the tests may be repeated after completion of 4 days aging without prejudice.
- 11.2 Mill-produced material in the O or F temper of alloys 2219, Alclad 2219, 6061, 7075, Alclad 7075, Alclad one-side 7075, 7008 Alclad 7075, 7178, and Alclad 7178 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and precipitation heat treatment, develop the properties specified in Table 3 for T62 temper material.
- 11.3 Mill-produced material in the O or F temper of 7008 Alclad 7075 (without the subsequent imposition of cold work or forming operations) shall, upon proper solution heat treatment and stabilizing, be capable of attaining the properties specified in Table 3 for the T76 temper.
- 11.4 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and natural aging for four days at room temperature, be capable of attaining the properties specified in Table 3 for the T42 temper.

Alloys Tempers

2014 and Alclad 2014 T3, T4, T451, T6, T651 2024 and Alclad 2024 T3, T4, T351, T81, T851 1½ % Alclad 2024, Alclad one-side 2024 and T3, T351, T81, T851 1½ % Alclad one-side 2024

Note 6—Beginning with the 1974 revision, 6061 and Alclad 6061 T4, T451, T6, and T651 were deleted from this paragraph because experience has shown that reheat-treated material may develop large recrystallized grains and may fail to develop the tensile properties shown in Table 3.

11.5 Mill-produced material in the following alloys and tempers shall, after proper resolution heat treatment and precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the T62 temper.

Alloys Tempers

2219 and Alclad 2219
7075
7075
7178, and Alclad 7075,
7178, and Alclad 7178
Alclad one-side 7075
7178, and T755
Alclad one-side 7075
7178, and Alclad 7178
Alclad one-side 7075
7178, and Alclad 7178

11.6 Mill-produced material in the following alloys and tempers and T42 temper material shall, after proper precipitation heat treatment, be capable of attaining the properties specified in Table 3 for the aged tempers listed below.

Alloy and Temper

Temper after Aging

2014 and Alclad 2014-T3, T4, T42, T451

2024, Alclad 2024, 1½ % Alclad 2024, Alclad T81, T851, T861, T62 or T72, one-side 2024 and 1½ % Alclad one-side respectively 2024-T3, T351, T361, T42

2219 and Alclad 2219-T31, T351, T37

T81, T851, T87, respectively T6, T651, T62, respectively T6, T651, T62, respectively

12. Bend Properties

- 12.1 *Limits*—Sheet and plate shall be capable of being bent cold through an angle of 180° around a pin having a diameter equal to N times the thickness of the sheet or plate without cracking, the value of N being as prescribed in Table 2 for the different alloys, tempers, and thicknesses. The test need not be conducted unless specified on the purchase order.
- 12.2 Test Specimens—When bend tests are made, the specimens for sheet shall be the full thickness of the material, approximately ³/₄ in. in width, and when practical, at least 6 in. in length. Such specimens may be taken in any direction and their edges may be rounded to a radius of approximately ¹/₁₆ in. if desired. For sheet less than ³/₄ in. in width, the specimens should be the full width of the material.
- 12.3 *Test Methods*—The bend tests shall be made in accordance with Test Method E 290 except as stated otherwise in 12.2.

13. Stress-Corrosion Resistance

13.1 When specified on the purchase order or contract, alloys 2124-T851, 2219-T851, and 2219-T87 plate shall be subjected to the test specified in 13.3 and shall exhibit no evidence of stress-corrosion cracking. One sample shall be taken from each parent plate in each lot and a minimum of three adjacent replicate specimens from this sample shall be tested. The producer shall maintain records of all lot acceptance test results and make them available for examination at the producer's facility.

- 13.2 Alloy 7075 in the T73-type and T76-type tempers, and alloys Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178 in the T76-type tempers, shall be capable of exhibiting no evidence of stress-corrosion cracking when subjected to the test specified in 13.3.
- 13.2.1 For lot-acceptance purposes, resistance to stress-corrosion cracking for each lot of material shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
- 13.2.2 For surveillance purposes, each month the producer shall perform at least one test for stress-corrosion resistance in accordance with 13.3 on each applicable alloy-temper for each thickness range 0.750 in. and over listed in Table 3, produced that month. Each sample shall be taken from material considered acceptable in accordance with lot-acceptance criteria of Table 4. A minimum of three adjacent replicate specimens shall be taken from each sample and tested. The producer shall maintain records of all lots so tested and make them available for examination at the producer's facility.
- 13.3 The stress-corrosion cracking test shall be performed on plate 0.750 in. and over in thickness as follows:
- 13.3.1 Specimens shall be stressed in tension in the short transverse direction with respect to grain flow and held at constant strain. For alloy 2124-T851, the stress levels shall be 50 % of the specified minimum long transverse yield strength. For alloy 2219-T851 and T87, the stress levels shall be 75 % of the specified minimum long transverse yield strength. For T73-type tempers, the stress level shall be 75 % of the specified minimum yield strength and for T76-type, it shall be 25 ksi.
- 13.3.2 The stress-corrosion test shall be made in accordance with Test Method G 47.
- 13.3.3 There shall be no visual evidence of stress-corrosion cracking in any specimen, except that the retest provisions of 19.2 shall apply.

14. Exfoliation-Corrosion Resistance

- 14.1 Alloys 7075, Alclad 7075, 7008 Alclad 7075, 7178, and Alclad 7178, in the T76-type tempers, shall be capable of exhibiting no evidence of exfoliation corrosion equivalent to or in excess of that illustrated by Photo EB in Fig. 2 of Test Method G 34 when subjected to the test in 14.2.
- 14.1.1 For lot-acceptance purposes, resistance to exfoliation corrosion for each lot of material in the alloys and tempers listed in 14.1 shall be established by testing the previously selected tension-test samples to the criteria shown in Table 4.
- 14.1.2 For surveillance purposes, each month the producer shall perform at least one test for exfoliation-corrosion resistance for each alloy for each thickness range listed in Table 3, produced that month. The samples for test shall be selected at random from material considered acceptable in accordance with the lot-acceptance criteria of Table 4. The producer shall maintain records of all surveillance test results and make them available for examination.
- 14.2 The test for exfoliation-corrosion resistance shall be made in accordance with Test Method G 34 and the following:
- 14.2.1 The specimens shall be a minimum of 2 in. by 4 in. with the 4-in. dimension in a plane parallel to the direction of final rolling. They shall be full-section thickness specimens of the material except that for material 0.101 in. or more in

thickness, 10 % of the thickness shall be removed by machining one surface. The cladding of alclad sheet of any thickness shall be removed by machining the test surface; the cladding on the back side (nontest surface) of the specimen for any thickness of alclad material shall also either be removed or masked off. For machined specimens, the machined surface shall be evaluated by exposure to the test solution.

15. Cladding

15.1 Preparatory to rolling alclad sheet and plate to the specified thickness, the aluminum or aluminum-alloy plates which are bonded to the alloy ingot or slab shall be of the composition shown in Table 1 and shall each have a thickness not less than that shown in Table 5 for the alloy specified.

15.2 When the thickness of the cladding is to be determined on finished material, not less than one transverse sample approximately ¾ in. in length shall be taken from each edge and from the center width of the material. Samples shall be mounted to expose a transverse cross section and shall be polished for examination with a metallurgical microscope. Using 100× magnification, the maximum and minimum cladding thickness on each surface shall be measured in each of five fields approximately 0.1 in. apart for each sample. The average of the ten values (five minima plus five maxima) on each sample surface is the average cladding thickness and shall meet the minimum average and, when applicable, the maximum average specified in Table 5.

16. Dimensional Tolerances

16.1 *Thickness*—The thickness of flat sheet, coiled sheet, and plate shall not vary from that specified by more than the respective permissible variations prescribed in Tables 7.7a, 7.7b, 7.26, 7.31, and 8.2 of ANSI H35.2. Permissible variations in thickness of plate specified in thicknesses exceeding 6 in. shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed.

16.2 Length, Width, Lateral Bow, Squareness, and Flatness—Coiled sheet shall not vary in width or in lateral bow from that specified by more than the permissible variations prescribed in Tables 7.11 and 7.12, respectively, of ANSI H35.2. Flat sheet and plate shall not vary in width, length, lateral bow, squareness, or flatness by more than the permissible variations prescribed in the following tables of ANSI H35.2 except that where the tolerances for sizes ordered are not covered by this specification, the permissible variations shall be the subject of agreement between the purchaser and the producer or the supplier at the time the order is placed:

Table No.	Title
7.8	Width, Sheared Flat Sheet and Plate
7.9	Length, Sheared Flat Sheet and Plate
7.10	Width and Length, Sawed Flat Sheet and Plate
7.13	Lateral Bow, Flat Sheet and Plate
7.14	Squareness, Flat Sheet and Plate
7.17	Flatness, Flat Sheet
7 18	Flatness Sawed or Sheared Plate

16.3 Dimensional tolerances for sizes not covered in ANSI H35.2 shall be as agreed upon between the producer and purchaser and shall be specified in the contract or purchase order.

16.4 Sampling for Inspection—Examination for dimensional conformance shall be made to ensure conformance to the tolerance specified.

17. Internal Quality

17.1 When specified by the purchaser at the time of placing the order, plate 0.500 in. to 4.500 in. in thickness and up to 2000 lb in maximum weight in alloys 2014, 2024, 2124, 2219, 7075, and 7178, both bare and Alclad where applicable, shall be tested in accordance with Practice B 594 to the discontinuity acceptance limits of Table 6.

17.2 When specified by the purchaser at the time of placing the order, plate 0.500 in. in thickness and greater for ASME pressure vessel applications in alloys 1060, 1100, 3003, Alclad 3003, 3004, Alclad 3004, 5052, 5083, 5086, 5154, 5254, 5454, 5456, 5652, 6061, and Alclad 6061 shall be tested in accordance with Test Method B 548. In such cases, the material will be subject to rejection if the following limits are exceeded unless it is determined by the purchaser that the area of the plate containing significant discontinuities will be removed during the subsequent fabrication process or that the plate may be repaired by welding:

17.2.1 If the longest dimension of the marked area representing a discontinuity causing a complete loss of back reflection (95 % or greater) exceeds 1.0 in.

17.2.2 If the length of the marked area representing a discontinuity causing an isolated ultrasonic indication without a complete loss of back reflection (95 % or greater) exceeds 3.0 in.

17.2.3 If each of two marked areas representing two adjacent discontinuities causing isolated ultrasonic indications without a complete loss of back reflection (95 % or greater) is longer than 1.0 in., and if they are located within 3.0 in. of each other

18. Source Inspection

18.1 If the purchaser desires that his representative inspect or witness the inspection and testing of the material prior to shipment, such agreement shall be made by the purchaser and producer as part of the purchase contract.

18.2 When such inspection or witness of inspection and testing is agreed upon, the producer shall afford the purchaser's representative all reasonable facilities to satisfy him that the material meets the requirements of this specification. Inspection and tests shall be conducted so there is no unnecessary interference with the producer's operations.

19. Retest and Rejection

19.1 If any material fails to conform to all of the applicable requirements of this specification, the inspection lot shall be rejected.

19.2 When there is evidence that a failed specimen was not representative of the inspection lot and when no other sampling plan is provided or approved by the purchaser through the contract or purchase order, at least two additional specimens shall be selected to replace each test specimen that failed. All specimens so selected for retest shall meet the requirements of the specification or the lot shall be subject to rejection.

- 19.3 Material in which defects are discovered subsequent to inspection may be rejected.
- 19.4 If material is rejected by the purchaser, the producer or supplier is responsible only for replacement of material to the purchaser. As much as possible of the rejected material shall be returned to the producer or supplier by the purchaser.

20. Identification Marking of Product

- 20.1 When specified on the purchase order or contract, all sheet and plate shall be marked in accordance with Practice B 666/B 666M.
- 20.2 In addition, alloys in the 2xxx and 7xxx series in the T3-, T4-, T6-, T7-, and T8-type tempers and, when specified, 6061-T6 and T651 shall be marked with the lot number in at least one location on each piece.
- 20.3 The requirements specified in 20.1 and 20.2 are minimum; marking systems that involve added information, larger characters, and greater frequencies are acceptable under this specification.

21. Packaging and Package Marking

21.1 The material shall be packaged to provide adequate protection during normal handling and transportation and each package shall contain only one size, alloy, and temper of

- material unless otherwise agreed. The type of packaging and gross weight of containers shall, unless otherwise agreed, be at the producer's or supplier's discretion, provided that they are such as to ensure acceptance by common or other carriers for safe transportation at the lowest rate to the delivery point.
- 21.2 Each shipping container shall be marked with the purchase order number, material size, specification number, alloy and temper, gross and net weights, and the producer's name or trademark.
- 21.3 When specified in the contract or purchase order, material shall be preserved, packaged, and packed in accordance with the requirements of Practices B 660. The applicable levels shall be as specified in the contract or order.

22. Certification

22.1 The producer or supplier shall, on request, furnish to the purchaser a certificate stating that each lot has been sampled, tested, and inspected in accordance with this specification, and has met the requirements.

23. Keywords

23.1 aluminum alloy; aluminum-alloy plate; aluminum-alloy sheet

TABLE 2 Mechanical Property Limits for Nonheat-Treatable Alloy^{A,B}

T	On a lift of This land of	Tensile St	rength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
			Aluminum	1060			
0	0.006–0.019	8.0	14.0	2.5		15	
	0.020-0.050	8.0	14.0	2.5		22	
	0.051-3.000	8.0	14.0	2.5		25	
H12 ^C	0.017-0.050	11.0	16.0	9.0		6	
or	0.051-2.000	11.0	16.0	9.0	•••	12	•••
H22 ^C	0.031 2.000	11.0	10.0	0.0		12	•••
H14 ^C	0.009-0.019	12.0	17.0	10.0		1	
or or	0.009-0.019	12.0	17.0	10.0		5	
H24 ^C		12.0	17.0				••
H24°	0.051-1.000	12.0	17.0	10.0	•••	10	
H16 ^C	0.006-0.019	14.0	19.0	11.0		1	
or	0.020-0.050	14.0	19.0	11.0		4	
H26 ^C	0.051-0.162	14.0	19.0	11.0		5	
H18 ^C	0.006-0.019	16.0		12.0		1	
or	0.020-0.050	16.0		12.0		3	
H28 ^C	0.051-0.128	16.0		12.0		4	
H112	0.250-0.499	11.0		7.0		10	
111112	0.500-1.000	10.0		5.0	•••	20	•••
	1.001–3.000	9.0		4.0		25	
F	0.250-3.000		•••	•••		•••	•••
			Aluminum	1100			
0	0.006-0.019	11.0	15.5	3.5		15	0
	0.020-0.031	11.0	15.5	3.5		20	0
	0.032-0.050	11.0	15.5	3.5		25	0
	0.051-0.249	11.0	15.5	3.5		30	0
	0.250-3.000	11.0	15.5	3.5		28	0
H12 ^C	0.017-0.019	14.0	19.0	11.0		3	0
or	0.020-0.031	14.0	19.0	11.0		4	0
H22 ^C	0.032-0.050	14.0	19.0	11.0		6	0

TABLE 2 Continued

-	0 7 17 17	Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter	
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N	
	0.051–0.113	14.0	19.0	11.0		8	0	
	0.114-0.499	14.0	19.0	11.0		9	0	
	0.500–2.000	14.0	19.0	11.0		12	0	
114 ^C	0.009-0.012	16.0	21.0	14.0		1	0	
or	0.013-0.019	16.0	21.0	14.0		2	0	
124 ^C	0.020-0.031	16.0	21.0	14.0		3	0	
	0.032-0.050	16.0	21.0	14.0		4	0	
	0.051-0.113	16.0	21.0	14.0		5	0	
	0.114-0.499	16.0	21.0	14.0		6	0	
	0.500–1.000	16.0	21.0	14.0		10	0	
116 ^C	0.006–0.019	19.0	24.0	17.0		1	4	
or	0.020-0.031	19.0	24.0	17.0		2	4	
126 ^C	0.032-0.050	19.0	24.0	17.0		3	4	
	0.051–0.162	19.0	24.0	17.0	•••	4	4	
H18 ^C	0.006-0.019	22.0				1		
or	0.020-0.031	22.0				2		
128 ^C	0.032-0.050	22.0				3		
	0.051-0.128	22.0				4		
J110	0.250, 0.400	12.0		7.0		0		
1112	0.250-0.499	13.0	•••	7.0	•••	9	•••	
	0.500-2.000	12.0	•••	5.0	•••	14	•••	
D	2.001-3.000 0.250-3.000	11.5		4.0		20		
	0.200-3.000	•••	 All 0/		•••		•••	
			Alloy 30					
)	0.006-0.007	14.0	19.0	5.0	•••	14	0	
	0.008-0.012	14.0	19.0	5.0	•••	18	0	
	0.013-0.031	14.0	19.0	5.0		20	0	
	0.032-0.050	14.0	19.0	5.0		23	0	
	0.051-0.249	14.0	19.0	5.0		25	0	
	0.250-3.000	14.0	19.0	5.0		23		
112 ^C	0.017-0.019	17.0	23.0	12.0		3	0	
or	0.020-0.031	17.0	23.0	12.0		4	0	
122 ^C	0.032-0.050	17.0	23.0	12.0		5	0	
122	0.051-0.113	17.0	23.0	12.0		6	0	
	0.114-0.161	17.0	23.0	12.0	•••	7	0	
						8	0	
	0.162-0.249	17.0	23.0	12.0				
	0.250-0.499 0.500-2.000	17.0 17.0	23.0 23.0	12.0 12.0		9 10		
	0.000 2.000	17.0	20.0	12.0		10	•••	
114 ^C	0.009-0.012	20.0	26.0	17.0		1	0	
or	0.013-0.019	20.0	26.0	17.0		2	0	
124 ^C	0.020-0.031	20.0	26.0	17.0		3	0	
	0.032-0.050	20.0	26.0	17.0		4	0	
	0.051-0.113	20.0	26.0	17.0		5	0	
	0.114-0.161	20.0	26.0	17.0		6	2	
	0.162-0.249	20.0	26.0	17.0		7	2	
	0.250-0.499	20.0	26.0	17.0		8		
	0.500-1.000	20.0	26.0	17.0		10		
116 ^C	0.006-0.019	24.0	30.0	21.0		1	4	
or	0.020-0.019	24.0	30.0	21.0	•••	2	4	
126 ^C								
120	0.032-0.050 0.051-0.162	24.0 24.0	30.0 30.0	21.0		3 4	4 6	
	0.051–0.162	24. U	30.0	21.0		4	O	
118 ^C	0.006-0.019	27.0		24.0		1		
or	0.020-0.031	27.0		24.0		2		
128 ^C	0.032-0.050	27.0		24.0		3		
	0.051-0.128	27.0		24.0		4		
H112	0.250-0.499	17.0		10.0		8		
	0.500-2.000	15.0		6.0		12	•••	
	2.001–3.000	14.5		6.0		18		
D	0.250-3.000							

TABLE 2 Continued

Temper		Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
)	0.006-0.007	13.0	18.0	4.5		14	
	0.008-0.012	13.0	18.0	4.5		18	
	0.013-0.031	13.0	18.0	4.5		20	
	0.032-0.050	13.0	18.0	4.5		23	
	0.051-0.249	13.0	18.0	4.5		25	
	0.250-0.499	13.0	18.0	4.5	•••	23	•••
	0.500-3.000	14.0 ^E	19.0 [€]	5.0 ^E	•••	23	•••
	0.300 0.000	14.0	19.0	5.0	•••	25	•••
112 ^C	0.017-0.031	16.0	22.0	11.0		4	
or	0.032-0.050	16.0	22.0	11.0		5	
122 ^C	0.051-0.113	16.0	22.0	11.0		6	
	0.114-0.161	16.0	22.0	11.0		7	
	0.162-0.249	16.0	22.0	11.0		8	
	0.250-0.499	16.0	22.0	11.0		9	
	0.500-2.000	17.0 ^E	23.0 ^E	12.0 ^E		10	
114 ^C	0.009-0.012	19.0	25.0	16.0		1	
or	0.013-0.019	19.0	25.0	16.0	•••	2	•••
124 ^C							
124	0.020-0.031	19.0	25.0	16.0		3	
	0.032-0.050	19.0	25.0	16.0	•••	4	•••
	0.051–0.113	19.0	25.0	16.0		5	
	0.114-0.161	19.0	25.0	16.0		6	
	0.162-0.249	19.0	25.0	16.0		7	
	0.250-0.499	19.0	25.0	16.0		8	
	0.500-1.000	20.0 ^E	26.0 ^E	17.0 ^E		10	
I4 o C	0.000.0.010	00.0	00.0	00.0			
116 ^C	0.006-0.019	23.0	29.0	20.0		1	•••
or	0.020-0.031	23.0	29.0	20.0		2	
126 ^C	0.032-0.050	23.0	29.0	20.0		3	
	0.051–0.162	23.0	29.0	20.0		4	
118	0.006-0.019	26.0				1	
110	0.020-0.031	26.0	•••	•••	•••	2	•••
							•••
	0.032–0.050 0.051–0.128	26.0 26.0	•••	•••		3 4	•••
	0.001 0.120	20.0	•••	•••		7	•••
H112	0.250-0.499	16.0		9.0		8	
	0.500-2.000	15.0 ^E		6.0 ^E		12	
	2.001-3.000	14.5 ^{<i>E</i>}		6.0 ^E		18	
= D	0.250-3.000						
	0.230-3.000	•••	 All 00			•••	•••
			Alloy 30	04			
))	0.006-0.007	22.0	29.0	8.5	•••		
)	0.006-0.007 0.008-0.019	22.0 22.0	29.0 29.0	8.5 8.5		 10	0
)							
)	0.008-0.019	22.0	29.0	8.5		10	0
)	0.008–0.019 0.020–0.031 0.032–0.050	22.0 22.0 22.0	29.0 29.0 29.0	8.5 8.5 8.5	 	10 14 16	0 0 0
)	0.008–0.019 0.020–0.031	22.0 22.0	29.0 29.0	8.5 8.5		10 14	0 0
	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000	22.0 22.0 22.0 22.0 22.0	29.0 29.0 29.0 29.0 29.0	8.5 8.5 8.5 8.5 8.5	 	10 14 16 18 16	0 0 0 0
∃32 [€]	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019	22.0 22.0 22.0 22.0 22.0 22.0	29.0 29.0 29.0 29.0 29.0 35.0	8.5 8.5 8.5 8.5 8.5	 	10 14 16 18 16	0 0 0 0
1 32 [€] or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031	22.0 22.0 22.0 22.0 22.0 22.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0	 	10 14 16 18 16	0 0 0 0 0 1
132 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0		10 14 16 18 16 1 3 4	0 0 0 0 0 1 1
132 ^{<i>C</i>} or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031	22.0 22.0 22.0 22.0 22.0 22.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0		10 14 16 18 16	0 0 0 0 0 1
132 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0		10 14 16 18 16 1 3 4	0 0 0 0 0 1 1
H32 ^C or H22 ^C	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0		10 14 16 18 16 1 3 4 5	0 0 0 0 1 1 2
H32 ^C or H22 ^C H34 ^C	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 21.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 1 1 2
132 ^C or 122 ^C 134 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 21.0 25.0 25.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 0 1 1 2
132° or 122° 134° or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0 38.0 38.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 1 1 2
132° or 122° 134° or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 21.0 25.0 25.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 0 1 1 2
H32 ^C or H22 ^C H34 ^C or H24 ^C	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C H34 ^C or H24 ^C H36 ^C	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 35.0 38.0 38.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0		10 14 16 18 16 1 3 4 5 6	0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C H34 ^C or H24 ^C or H24 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0 38.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1	0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C H34 ^C or H24 ^C or H24 ^C Or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.031	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0 38.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2	0 0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C H34 ^C	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.031 0.032-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0 28.0 32.0 32.0 32.0 32.0 35.0 35.0 35.0 35.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0 41.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2 3	0 0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C or H34 ^C or H24 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.031	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0 38.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2	0 0 0 0 0 1 1 2 2 3 4
H32 ^C or H22 ^C or H34 ^C or H24 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.031 0.032-0.050	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0 28.0 32.0 32.0 32.0 32.0 35.0 35.0 35.0 35.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 38.0 41.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2 3	0 0 0 0 0 1 1 2 2 3 4
H32 ^C or H32 ^C or H34 ^C or H24 ^C or H26 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.050 0.051-0.113 0.114-1.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0 28.0 32.0 32.0 32.0 35.0 35.0 35.0 35.0 35.0 35.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 41.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0 28.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2 3 4	0 0 0 0 0 1 1 2 2 3 4 6 6 6 6 8
H32 ^C or H22 ^C H34 ^C or H24 ^C or H26 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.162	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0 28.0 32.0 32.0 32.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0 35.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 41.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2 3 4	0 0 0 0 0 1 1 2 2 3 4 6 6 6 6 8 8
H32 ^C or H22 ^C H34 ^C or H24 ^C or H24 ^C or	0.008-0.019 0.020-0.031 0.032-0.050 0.051-0.249 0.250-3.000 0.017-0.019 0.020-0.031 0.032-0.050 0.051-0.113 0.114-2.000 0.009-0.019 0.020-0.050 0.051-0.113 0.114-1.000 0.006-0.007 0.008-0.019 0.020-0.050 0.051-0.113 0.114-1.000	22.0 22.0 22.0 22.0 22.0 28.0 28.0 28.0 28.0 32.0 32.0 32.0 35.0 35.0 35.0 35.0 35.0 35.0	29.0 29.0 29.0 29.0 29.0 35.0 35.0 35.0 35.0 38.0 38.0 41.0 41.0 41.0	8.5 8.5 8.5 8.5 8.5 8.5 21.0 21.0 21.0 21.0 25.0 25.0 25.0 25.0 25.0 28.0 28.0 28.0 28.0 28.0		10 14 16 18 16 1 3 4 5 6 1 3 4 5 1 2 3 4	0 0 0 0 0 1 1 2 2 3 4 6 6 6 6 8

TABLE 2 Continued

Tomper	Considered Thisteness in	Tensile S	trength, ksi	Yield Strength (0	2 % offset), ksi	Elongation in 2 in. or 4×	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H112	0.250–3.000	23.0		9.0		7	
= D	0.250-3.000						
			Alclad Allo	y 3004			
)	0.006-0.007	21.0	28.0	8.0			
	0.008-0.019	21.0	28.0	8.0		10	
	0.020-0.031	21.0	28.0	8.0		14	
	0.032-0.050	21.0	28.0	8.0		16	
	0.051-0.249	21.0	28.0	8.0		18	
	0.250-0.499	21.0	28.0	8.0		16	•••
	0.500–3.000	22.0 ^E	29.0 ^E	8.5 ^E		16	
132 ^C	0.017-0.019	27.0	34.0	20.0		1	
or	0.020-0.031	27.0	34.0	20.0		3	
122 ^C	0.032-0.050	27.0	34.0	20.0		4	
	0.051-0.113	27.0	34.0	20.0		5	
	0.114-0.249	27.0	34.0	20.0		6	
	0.250-0.499	27.0	34.0	20.0		6	•••
	0.500-2.000	28.0 ^E	35.0 ^E	21.0 ^E		6	
134 ^C	0.009-0.019	31.0	37.0	24.0		1	
or	0.009-0.019	31.0	37.0 37.0	24.0	•••	3	***
124 ^C	0.051-0.113	31.0	37.0	24.0		4	
	0.114–0.249	31.0	37.0	24.0		5	
	0.250-0.499	31.0	37.0	24.0		5	
	0.500-1.000	32.0 ^E	38.0 [€]	25.0 ^E		5	
136 ^C	0.006-0.007	34.0	40.0	27.0			
or ∃26 ^C	0.008-0.019	34.0	40.0	27.0	•••	1	
720-	0.020-0.031 0.032-0.050	34.0 34.0	40.0 40.0	27.0 27.0		2 3	•••
	0.052-0.050	34.0	40.0	27.0		4	
H38	0.006-0.007	37.0					
	0.008-0.019	37.0				1	
	0.020-0.031	37.0	•••	•••		2	***
	0.032-0.050 0.051-0.128	37.0 37.0		•••		3 4	•••
	0.031-0.120	37.0		•••		4	•••
H112	0.250-0.499	22.0		8.5		7	
	0.500-3.000	23.0 ^E		9.0 ^E		7	
D	0.250-3.000						
	0.230 0.000	***	Alloy 3		•••		•••
	0.000.0.07						
)	0.006-0.007	17.0	24.0	6.5		10	•••
	0.008-0.012 0.013-0.019	17.0 17.0	24.0 24.0	6.5 6.5		12 14	
	0.020-0.031	17.0	24.0	6.5		16	•••
	0.032-0.050	17.0	24.0	6.5		18	
	0.051-0.249	17.0	24.0	6.5		20	
112	0.017-0.019	20.0	27.0	17.0		1	•••
	0.020-0.050	20.0	27.0	17.0		2	
	0.051-0.113	20.0	27.0	17.0		3	***
	0.114-0.161 0.162-0.249	20.0 20.0	27.0 27.0	17.0 17.0		4 5	
	0.102-0.248	20.0	27.0	17.0	•••	ð	•••
114	0.009-0.031	24.0	31.0	21.0		1	
	0.032-0.050	24.0	31.0	21.0		2	***
	0.051-0.113	24.0	31.0	21.0		3	
	0.114-0.249	24.0	31.0	21.0		4	
J16	0.006.0.004	20.0	05.0	05.0		4	
H16	0.006–0.031 0.032–0.113	28.0 28.0	35.0	25.0 25.0		1 2	
	0.032–0.113 0.114–0.162	28.0	35.0 35.0	25.0 25.0	•••	3	•••
	0.11T 0.10Z	20.0	00.0	20.0	•••	J	
H18	0.006-0.031	32.0		29.0		1	
	0.032-0.128	32.0		29.0		2	

TABLE 2 Continued

Temper	Specified Thickness, in.	Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
теттрет	Specified Trilokfless, III.	min	max	min	max	Diameter, min, %	Factor, N
H19	0.006–0.012	34.0					
	0.013-0.063	34.0				1	
H25	0.016–0.019	26.0	34.0	22.0		1	
1120	0.020-0.031	26.0	34.0	22.0		2	•••
	0.032-0.050	26.0	34.0	22.0		3	
	0.051-0.080	26.0	34.0	22.0		4	
H27	0.016-0.019	29.5	37.5	25.5		1	
	0.020-0.031	29.5	37.5	25.5		2	
	0.032-0.050	29.5	37.5	25.5		3	
	0.051-0.080	29.5	37.5	25.5		4	
H28	0.016–0.019	31.0		27.0		1	
	0.020-0.031	31.0		27.0		2	
	0.032-0.050	31.0		27.0		3	•
	0.051–0.080	31.0	•••	27.0		4	
H29	0.025-0.031	33.0		28.0		1	
	0.032-0.050	33.0		28.0		2	
	0.051–0.071	33.0		28.0		3	
			Alloy 31				
0	0.013-0.019	14.0	21.0	5.0		16	
	0.020-0.031 0.032-0.080	14.0 14.0	21.0 21.0	5.0 5.0		18 20	
H12	0.017-0.019	19.0	26.0	15.0		1	
	0.020-0.031 0.032-0.050	19.0 19.0	26.0 26.0	15.0 15.0		1 2	
	0.051-0.080	19.0	26.0	15.0		3	
114.4	0.040.0.040	00.0	22.2	10.0			
H14	0.013-0.019 0.020-0.031	22.0 22.0	29.0 29.0	18.0 18.0	•••	1 1	•••
	0.032-0.051	22.0	29.0	18.0		2	
	0.051-0.080	22.0	29.0	18.0		2	
H16	0.013-0.031	25.0	32.0	21.0		1	
1110	0.013-0.031	25.0	32.0	21.0	•••	2	***
	0.051-0.080	25.0	32.0	21.0		2	
1110	0.010.0.001	00.0		04.0		4	
H18	0.013–0.031 0.032–0.050	28.0 28.0		24.0 24.0		1 1	
	0.051-0.080	28.0		24.0		2	
шоо	0.040, 0.040	40.0		45.0		0	
H22	0.013-0.019 0.020-0.031	19.0 19.0		15.0 15.0		3 4	
	0.032-0.050	19.0		15.0		5	
	0.051-0.080	19.0		15.0		6	
H24	0.013-0.019	22.0		18.0		2	
	0.020-0.031	22.0		18.0		3	
	0.032-0.050	22.0		18.0		4	
	0.051-0.080	22.0		18.0		6	
H25	0.013-0.019	23.0		19.0		2	
	0.020-0.031	23.0		19.0		3	
	0.032-0.050	23.0		19.0		4	
	0.051-0.080	23.0		19.0		6	
Line	0.012.0.024	QE O		01.0		0	
H26	0.013-0.031 0.032-0.050	25.0 25.0		21.0 21.0		3 4	
	0.051-0.080	25.0		21.0		5	
		28.0		24.0		0	
1100	0.040.0.004			2/1 ()		2	
H28	0.013-0.031 0.032-0.050						
H28	0.013–0.031 0.032–0.050 0.051–0.080	28.0 28.0 28.0		24.0 24.0 24.0		3 4	

TABLE 2 Continued

				Vi II Ci II (2	0.0/ // 1) 1 1		
Temper	Specified Thickness, in.		trength, ksi	Yield Strength (0	•	Elongation in 2 in. or 4× Diameter,	Bend Diameter Factor, N
		min	max	min	max	min, %	racioi, N
)	0.006-0.007	15.0	21.0	5.0		12	
	0.008-0.012	15.0	21.0	5.0		14	
	0.013-0.019	15.0	21.0	5.0		16	
	0.020-0.031	15.0	21.0	5.0	•••	18	•••
	0.032-0.050	15.0	21.0	5.0		20	
	0.051-0.113	15.0	21.0	5.0	•••	21	•••
					•••		
	0.114-0.249 0.250-3.000	15.0 15.0	21.0 21.0	5.0 5.0		22 22	
112	0.017–0.019	18.0	24.0	14.0		2	
112	0.020-0.031	18.0	24.0	14.0	•••	3	
					•••		•••
	0.032-0.050	18.0	24.0	14.0		4	
	0.051-0.113	18.0	24.0	14.0	•••	6	•••
	0.114-0.161	18.0	24.0	14.0		7	
	0.162-0.249	18.0	24.0	14.0		8	
	0.250-0.499	18.0	24.0	14.0		9	
	0.500-2.000	18.0	24.0	14.0		10	
14	0.009-0.031	21.0	27.0	17.0		1	
	0.032-0.050	21.0	27.0	17.0		2	
	0.051-0.113	21.0	27.0	17.0		3	
	0.114–0.161	21.0	27.0	17.0		5	
	0.162–0.249	21.0	27.0	17.0	•••	6	•••
							•••
	0.250-0.499 0.500-1.000	21.0 21.0	27.0 27.0	17.0 17.0		8 10	
10	0.000.0.001	04.0	20.0	20.0		4	
16	0.006-0.031	24.0	30.0	20.0		1	
	0.032-0.050	24.0	30.0	20.0	•••	2	•••
	0.051–0.162	24.0	30.0	20.0	•••	3	
18	0.006-0.031	27.0				1	
	0.032-0.050	27.0				2	
	0.051-0.128	27.0				3	
32 ^C	0.017-0.019	17.0	23.0	12.0		3	
or	0.020-0.031	17.0	23.0	12.0		4	
22 ^C	0.032-0.050	17.0	23.0	12.0		5	
	0.051-0.113	17.0	23.0	12.0		7	
					•••	8	•••
	0.114–0.161	17.0	23.0	12.0			
	0.162-0.249 0.250-2.000	17.0 17.0	23.0 23.0	12.0 12.0		9 10	
34 ^{<i>C</i>}	0.009-0.012	20.0	26.0	15.0	•••	2	
or	0.013-0.031	20.0	26.0	15.0		3	
24 ^C	0.032-0.050	20.0	26.0	15.0		4	
	0.051-0.113	20.0	26.0	15.0		5	
	0.114-0.161	20.0	26.0	15.0		6	
	0.162–0.249	20.0	26.0	15.0	···	7	
	0.250-0.499	20.0	26.0	15.0	•••	8	
	0.500-1.000	20.0	26.0	15.0		10	
36 ^C	0.006–0.007	23.0	29.0	18.0		1	
	0.008-0.007	23.0	29.0	18.0	•••	2	•••
or occ							
26 ^C	0.020-0.031 0.032-0.162	23.0 23.0	29.0 29.0	18.0 18.0		3 4	
20		06.0				4	
38	0.006-0.012	26.0			•••	1	
	0.013–0.019	26.0				2	
	0.020-0.031	26.0				3	
	0.032-0.128	26.0				4	
112	0.250-0.499	17.0	•••			8	
	0.500-2.000	15.0				12	
	2.001–3.000	14.5				18	
D	0.250-3.000						
	5.200 0.000	***	Alloy 50	10	•••		•••
)	0.010–0.070	15.0	21.0	5.0		3	
	0.010-0.070				•••		•••
22	0.010-0.070	17.0	23.0	14.0		2	
					-		

TABLE 2 Continued

		Tensile St	rength, ksi	Yield Strength (0.	.2 % offset), ksi	Elongation in	Bend
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, N
						, ,,,	
H24	0.010-0.070	20.0	26.0	17.0	•••	1	
H26	0.010-0.070	23.0	29.0	21.0		1	
H28	0.010-0.070	26.0					
			Alloy 505	0			
0	0.006-0.007	18.0	24.0	6.0			0
	0.008-0.019	18.0	24.0	6.0		16	0
	0.020-0.031	18.0	24.0	6.0		18	0
	0.032-0.050	18.0	24.0	6.0	•••	20	0
	0.051–0.113 0.114–0.249	18.0 18.0	24.0 24.0	6.0 6.0	•••	20 22	0 0
	0.250-3.000	18.0	24.0	6.0		20	2
H32 ^C	0.017–0.050	22.0	28.0	16.0		4	1
or	0.051-0.249	22.0	28.0	16.0		6	2
H22 ^C							
H34 ^C	0.009-0.031	25.0	31.0	20.0		3	1
or UOAG	0.032-0.050	25.0	31.0	20.0		4	1
H24 ^C	0.051-0.249	25.0	31.0	20.0	•••	5	3
H36 ^C	0.006-0.019	27.0	33.0	22.0		2	3
or	0.020-0.050	27.0	33.0	22.0		3	3
H26 ^C	0.051-0.162	27.0	33.0	22.0		4	4
H38	0.006-0.007	29.0					
	0.008-0.031	29.0				2	
	0.032-0.050	29.0			•••	3	•••
	0.051–0.128	29.0	•••	•••		4	•••
H112	0.250-3.000	20.0		8.0		12	
F ^D	0.250-3.000						
			Alloy 505				
0	0.006-0.007	25.0	31.0	9.5			0
	0.008–0.012 0.013–0.019	25.0 25.0	31.0 31.0	9.5 9.5	•••	14 15	0 0
	0.020-0.031	25.0	31.0	9.5 9.5		16	0
	0.032-0.050	25.0	31.0	9.5		18	0
	0.051-0.113	25.0	31.0	9.5		19	0
	0.114–0.249	25.0	31.0	9.5		20	0
	0.250-3.000	25.0	31.0	9.5		18	
H32 ^C	0.017-0.019	31.0	38.0	23.0		4	0
or	0.020-0.050	31.0	38.0	23.0		5	1
H22 ^C	0.051-0.113	31.0	38.0	23.0		7	2
	0.114-0.249	31.0	38.0	23.0		9	3
	0.250-0.499 0.500-2.000	31.0 31.0	38.0 38.0	23.0 23.0		11 12	
Н34 ^С		34.0					
	0.009–0.019 0.020–0.050	34.0 34.0	41.0 41.0	26.0 26.0		3 4	1 2
				26.0		6	3
or		34 0	410	20.0		•	0
or	0.051-0.113	34.0 34.0	41.0 41.0	26.0		7	4
or		34.0 34.0 34.0	41.0 41.0 41.0	26.0 26.0		7 10	4
	0.051–0.113 0.114–0.249	34.0	41.0				
or H24 ^C H3 ^C or	0.051-0.113 0.114-0.249 0.250-1.000	34.0 34.0	41.0 41.0	26.0	 	10	
or H24 ^C H3 ^C or	0.051–0.113 0.114–0.249 0.250–1.000 0.006–0.007	34.0 34.0 37.0	41.0 41.0 44.0	26.0 29.0	 	10 2	4
or H24 ^C H3 ^C or H26 ^C H38 ^C	0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007	34.0 34.0 37.0 37.0 37.0 39.0	41.0 41.0 44.0 44.0	26.0 29.0 29.0 29.0 32.0	 	10 2 3 4	 4 4
or H24 ^C H3 ^C or H26 ^C H38 ^C or	0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007 0.008-0.031	34.0 34.0 37.0 37.0 37.0 39.0	41.0 41.0 44.0 44.0 44.0	26.0 29.0 29.0 29.0 32.0 32.0	 	10 2 3 4 2 3	 4 4 5
or H24 ^C H3 ^C or H26 ^C H38 ^C	0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007	34.0 34.0 37.0 37.0 37.0 39.0	41.0 41.0 44.0 44.0 44.0	26.0 29.0 29.0 29.0 32.0	 	10 2 3 4	 4 4 5
or H24 ^C H3 ^C or H26 ^C H38 ^C or	0.051-0.113 0.114-0.249 0.250-1.000 0.006-0.007 0.008-0.031 0.032-0.162 0.006-0.007 0.008-0.031	34.0 34.0 37.0 37.0 37.0 39.0	41.0 41.0 44.0 44.0 44.0 	26.0 29.0 29.0 29.0 32.0 32.0		10 2 3 4 2 3	 4 4 5

TABLE 2 Continued

H322 0.02 0.07 0.11 FD 0.26 O 0.07 0.26 0.76 1.57 H111 0.07 0.26 0.78 1.57 O 0.06 1.50 3.00 4.00 7.00 H32 0.12 0.18 1.50 H112 0.26 FD 0.26 H32C 0.02 0.06 0.02 0.06 0.26 H34C 0.00 0.06 0.26 H34C 0.00 0.06 H24C 0.06 H26C 0.06 H26C 0.06 H26C 0.06 H26C 0.06 H26C 0.06 H38C 0.00 H26C 0.06 H26C 0.06 H26C 0.06 H26C 0.06 H38C 0.00 FD 0.02 H26C 0.06 H38C 0.00 FD 0.02 H26C 0.06 H36C 0.06 H26C 0.06 H26C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H26C 0.06 H36C 0.06 H3		Tensile St	rength, ksi	Yield Strength (0	.2 % offset), ksi	Elongation in 2 in. or 4×	Bend Diameter
O.06 0.11 FP 0.25 O 0.07 0.26 0.76 1.57 H111 0.07 0.25 0.76 1.57 H111 0.07 0.05 1.50 3.00 4.00 5.00 7.00 H32 0.12 0.16 1.50 1.50 0.06 0.25 H34C 0.06 0.25 H34C 0.06 H24C 0.06 H38C 0.00 FP 0.06 H28C 0.06 H38C 0.06 H38C 0.06 H28C 0.06 H38C 0.06 H28C 0.06 H38C 0.06 H38C 0.06 H38C 0.06 H38C 0.06 H38C 0.06 H28C 0.06 H38C 0.06 H28C 0.06 H38C 0.06 H38C 0.06 H28C 0.06 H38C 0.06 H28C 0.06 H38C 0.06	Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
O 1.11 O 0.05 O 0.05 O 0.25 O.76 1.57 H1111 0.07 1.50	20–0.050	31.0	35.0	21.0		5	
O 0.25 O 0.07 1.57 H111 0.07 0.22 0.78 1.57 D 0.05 H32 0.12 0.18 1.50 H112 0.25 D 0.05 O 0.05 O 0.05 H32 0.12 O 1.10 O 0.05 O 0 0.05 O 0 0.05 O 0 0 0.05 O 0 0 0.05 O 0 0 0.05 O 0 0 0 0.05 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	51-0.113	31.0	35.0	210.		7	
O 0.07 0.25 0.78 1.57 1.57 1.57 1.57 H111 0.07 0.25 0.78 1.57 0.05 1.57 0.06 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	14–0.125	31.0	35.0	21.0		9	
0.25 0.76 1.57 1.57 H1111 0.07 0.25 0.78 1.52 0.00 1.50 3.00 4.00 5.00 7.00 H32 0.15 1.50 H112 0.25 1.50 0.05 0.05 0.05 0.05 0.05 0.05 0.0	50–3.000	•••	•••		•••		***
0.25 0.76 1.57 1.57 H1111 0.07 0.25 0.78 1.52 0.00 1.50 3.00 4.00 5.00 7.00 H32 0.15 1.50 H112 0.25 1.50 0.05 0.05 0.05 0.05 0.05 0.05 0.0			Alloy 50	59			
0.78 1.57 1.57 H111 0.07 0.28 0.78 1.57 0 0.08 1.57 1.57 0 0.08 1.50 3.00 4.00 5.00 7.00 H32 0.18 1.50 H112 0.28 0.28 0 0.00 0.28 H32 ^C 0.02 0 0.08 0 0.28 H32 ^C 0.02 0 0.08 0 0.28 H32 ^C 0.02 0 0.08 H32 ^C 0.00 H32 ^C	78–0.249	48.0 48.0	***	23.0		24 24	
1.57 H111 0.07 0.25 0.75 1.57 D 0.05 1.50 3.00 4.00 4.00 5.00 7.00 H32 0.15 1.50 H32 0.12 0.15 0.25 D 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05	50-0.787			23.0	•••		
0.25 0.75 1.57 0.00 1.50 3.00 4.00 5.00 7.00 H32	88–1.575 76–7.000	48.0 44.0		23.0 21.0		20 17	
0.25 0.75 1.57 0.00 1.50 3.00 4.00 5.00 7.00 4.112 0.15 1.50 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0	78–0.249	48.0		23.0		24	
0.78 1.57 0.00 1.57 0.00 1.50 3.00 4.00 5.00 7.00 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1	50–0.249 50–0.787	48.0		23.0	•••	24	•••
1.57 D 0.05 1.50 1.50 4.00 5.00 7.00 H32 0.15 1.50 H112 0.25 D 0.02 O.05	88–1.575	48.0		23.0	•••	20	
D 0.05 1.50 3.00 4.00 5.00 7.00 H32 0.15 1.50 1.50 1.50 1.50 1.50 1.50 1.50	76–7.000	44.0	•••	21.0	•••	17	
1.50 3.00 4.00 5.00 7.00 132 0.18 1.50 1.12 0.28 1.50 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02		-	Alloy 508				
3.00 4.00 5.00 7.00 132 0.18 1.50 1112 0.28 0.08 0.08 0.28 132° 0.09 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.08 136° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02 138° 0.00 0.02	51–1.500	40.0	51.0	18.0	29.0	16	
3.00 4.00 5.00 7.00 7.00 132 0.18 1.50 1112 0.28 0.08 0.08 0.28 132° 0.09 0.28 134° 0.00 0.02 132° 0.28 134° 0.00 0.02 132° 0.08 0.08 0.08 132° 0.09 0.08 0.08 134° 0.00 0.09 138° 0.00 0.08 138° 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	01–3.000	39.0	50.0	17.0	29.0	16	
4.00 5.00 7.00 132 0.11 1.50 1.150 1.50 0.25 0.25 0.05 0.25 0.06 0.25 132° 0.06 0.25 132° 0.06 0.25 132° 0.06 0.25 132° 0.06 0.07 1.00 1.00 1.00 1.00 1.00 1.00 1.00	01–4.000	38.0		16.0		16	
7.00 H32 0.12 0.18 1.50 H112 0.25 0.25	01–5.000	38.0		16.0		14	
132 0.12 0.18 1.50 1.112 0.25 1.50 0.02 0.05 0.05 0.05 0.05 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0	01–7.000	37.0		15.0		14	
0.18 1.50 1112 0.28 1.50 0 0.02 0.08 0.08 0.28 132° 0.02 0r 0.08 122° 0.28 134° 0.00 0r 122° 0.28 136° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28 138° 0.00 0.28	01–8.000	36.0	***	14.0		12	
1.50 H112 0.25 1.50 0.25 0.25 0.05 0.05 0.25 H32 ^C 0.06 0.7 H22 ^C 0.26 H34 ^C 0.07 0.06 0.25 H36 ^C 0.06 0.07 H26 ^C 0.05 H38 ^C 0.06 H38 ^C 0.07 H28 ^C 0.05 H38 ^C 0.06 H3	25–0.187	44.0	56.0	31.0	43.0	10	
1112 0.25 1.50 0.25 0.25 0.25 0.25 132° 0.02 0r 0.05 122° 0.25 134° 0.00 0r 124° 0.05 0r 0.02 1424° 0.05 0r 0.02 1426° 0.05 1426° 0.05 1.00 1.00 1.00 1.00 1.00 1.00 1.00	88-1.500	44.0	56.0	31.0	43.0	12	
1.50 0.025 0.025 1.32° 0.026 1.32° 0.026 1.34° 0.026 1.34° 0.026 1.34° 0.026 1.34° 0.026 1.34° 0.05 1.36° 0.06 1.36° 0.07 1.38° 0.06 1.38	01–3.000	41.0	56.0	29.0	43.0	12	
132° 0.25 132° 0.02 or 0.05 132° 0.25 134° 0.06 or 0.02 134° 0.05 124° 0.05 138° 0.06 or 0.02 138° 0.06 138° 0.06 or 0.02 138° 0.06 138° 0.06 138° 0.06 138° 0.06 138° 0.06 138° 0.06 128° 0.06 128° 0.06	50–1.500	40.0		18.0		12	
O 0.02 0.05 0.25 132° 0.02 0r 0.06 122° 0.25 134° 0.00 0r 0.02 124° 0.05 136° 0.00 0r 0.02 138° 0.00 0r 0.02 138° 0.00 0r 0.02 138° 0.00 0r 0.02 0.05 1.00 0.00 0.00 0.00 0.00 0.00 0.00	01–3.000	39.0		17.0		12	
0.08 0.28 H32 ^C 0.02 or 0.08 H34 ^C 0.00 or 0.02 H34 ^C 0.08 0.28 H36 ^C 0.00 or 0.02 H36 ^C 0.00 or 1.00 0.01 H26 ^C 0.05 H38 ^C 0.00	50–8.000						
0.08 0.28 H32 ^C 0.02 or 0.08 H34 ^C 0.00 or 0.02 H24 ^C 0.08 H26 ^C 0.00 or 0.02 H26 ^C 0.05 H38 ^C 0.00 0.05 H26 ^C 0.05 H38 ^C 0.06 D5 D 0.25			Alloy 508	36			
0.25 H32 ^C 0.02 or 0.05 H22 ^C 0.25 H34 ^C 0.00 or 0.02 H24 ^C 0.05 H26 ^C 0.05 H36 ^C 0.00 or 0.02 H38 ^C 0.00 or 0.02 H38 ^C 0.05 H38 ^C 0.00 or 0.02 H38 ^C 0.05 H38 ^C 0.00 or 0.02	20–0.050	35.0	44.0	14.0		15	
H32 ^C 0.02 or 0.05 H22 ^C 0.25 H34 ^C 0.00 or 0.02 H24 ^C 0.05 H36 ^C 0.00 or 0.02 H36 ^C 0.05 H38 ^C 0.05 H38 ^C 0.05 H312 0.16 H312 0	51–0.249	35.0	44.0	14.0		18	
or 0.05 H22° 0.26 H34° 0.00 or 0.02 H24° 0.05 H36° 0.00 or 0.02 H26° 0.05 H38° 0.00 or 0.02 H38° 0.00 or 0.02 H38° 0.00 or 0.02 H38° 0.00 or 0.02 H38° 0.00	50–2.000	35.0	44.0	14.0		16	
H22 ^C 0.25 H34 ^C 0.00 or 0.02 H24 ^C 0.05 H36 ^C 0.00 or 0.02 H26 ^C 0.05 H38 ^C 0.00 or 0.02 H38 ^C 0.00 or 0.02 H312 Or 0.05 H312 O.50 1.00 2.00 F ^D 0.25	20-0.050	40.0	47.0	28.0		6	
H34 ^C 0.00 or 0.02 H24 ^C 0.05 0.25 H36 ^C 0.00 or 0.02 H26 ^C 0.05 H28 ^C 0.00 H112 0.18 0.55 1.00 2.00 FD 0.25	51-0.249	40.0	47.0	28.0		8	
or 0.02 H24 ^C 0.05 0.25 H36 ^C 0.00 or 0.02 H38 ^C 0.05 H38 ^C 0.00 or H28 ^C H112 0.16 0.50 1.00 2.00 FD 0.25	50–2.000	40.0	47.0	28.0		12	
or 0.02 d24° 0.06 d24° 0.06 d26° 0.06 dr 0.02 d26° 0.06 d38° 0.00 dr d28° 0.06	09–0.019	44.0	51.0	34.0		4	
H24 ^C 0.05 0.25 H36 ^C 0.00 or 0.02 H26 ^C 0.05 H38 ^C 0.00 or H28 ^C H112 0.16 0.50 1.00 2.00 F ^D 0.25	20–0.050	44.0	51.0	34.0		5	
0.25 H36 ^C 0.00 or 0.02 H26 ^C 0.05 H38 ^C 0.00 r H28 ^C H112 0.16 1.00 2.00 =D 0.25	51–0.249	44.0	51.0	34.0		6	
or 0.02 426° 0.05 438° 0.00 or 428° 41112 0.18 0.50 1.00 2.00	50–1.000	44.0	51.0	34.0		10	
or 0.02 426° 0.05 438° 0.00 or 428° 41112 0.18 0.50 1.00 2.00	06–0.019	47.0	54.0	38.0		3	
H28 ^C 0.05 H38 ^C 0.00 or H28 ^C H112 0.18 0.50 1.00 2.00 0.25	20–0.050	47.0	54.0	38.0		4	
or H28° H112 0.18 0.50 1.00 2.00 =D 0.25	51–0.162	47.0	54.0	38.0		6	
or H28° H112 0.18 0.50 1.00 2.00 =D 0.25	06–0.020	50.0		41.0		3	
H112 0.18 0.50 1.00 2.00 FD 0.26							
0.50 1.00 2.00 =D 0.25							
1.00 2.00 =D 0.25	88-0.499	36.0		18.0		8	
2.00 =D 0.25 D 0.02	00–1.000	35.0		16.0		10	
D 0.25	01–2.000	35.0		14.0		14	
O.02	01–3.000	34.0		14.0		14	
	50–3.000						
			Alloy 51	54			
0.00	20-0.031	30.0	41.0	11.0		12	
	32-0.050	30.0	41.0	11.0		14	
	51–0.113	30.0	41.0	11.0		16	***
0.11	14–3.000	30.0	41.0	11.0		18	
H32 ^C 0.02	20–0.050	36.0	43.0	26.0		5	

TABLE 2 Continued

			IABLE 2 C	Onlinueu			
Temper	Specified Thickness, in.	Tensile Si	trength, ksi max	Yield Strength (0.	.2 % offset), ksi max	Elongation in 2 in. or 4× Diameter,	Bend Diameter Factor, N
			max	111111	max	min, %	
or	0.051-0.249	36.0	43.0	26.0		8	
H22 ^C	0.250-2.000	36.0	43.0	26.0		12	
∃34 ^{<i>C</i>}	0.009-0.050	39.0	46.0	29.0		4	
or	0.051-0.161	39.0	46.0	29.0		6	
H24 ^C	0.162-0.249	39.0	46.0	29.0		7	•••
124	0.250–1.000	39.0	46.0	29.0		10	
IOO C	0.000.0.050	40.0	40.0	00.0		0	
H36 ^C or	0.006-0.050 0.051-0.113	42.0 42.0	49.0 49.0	32.0 32.0		3 4	
H26 ^C	0.114–0.162	42.0	49.0	32.0		5	
Н38 ^С	0.006.0.050	45.0		35.0		3	
	0.006-0.050						
or H28 ^C	0.051–0.113 0.114–0.128	45.0 45.0		35.0 35.0		4 5	
.20	0 020	.0.0		33.3		Ü	
H112	0.250-0.499	32.0		18.0		8	
	0.500-2.000	30.0		11.0		11	•••
	2.001–3.000	30.0		11.0		15	
F ^D	0.250-3.000						
			Alloy 52	52			
H24	0.030-0.090	30.0	38.0			10	
H25	0.030-0.090	31.0	39.0			9	
H28	0.030-0.090	38.0				3	
			Alloy 52				
0	0.051–0.113	30.0	41.0	11.0		16	
	0.114–3.000	30.0	41.0	11.0		18	
LIOO C	0.054.0.040	22.2	40.0	00.0			
H32 ^C	0.051-0.249	36.0	43.0	26.0	•••	8	•••
or H22 ^C	0.250-2.000	36.0	43.0	26.0		12	
Н34 ^С	0.051-0.161	39.0	46.0	29.0		6	
or	0.162-0.249	39.0	46.0	29.0		7	
H24 ^C	0.250-1.000	39.0	46.0	29.0		10	
H36 ^C	0.051-0.113	42.0	49.0	32.0		4	
or	0.114-0.162	42.0	49.0	32.0		5	
H26 ^C							
H38 ^C	0.051-0.113	45.0		35.0		4	
	0.114–0.128	45.0	•••	35.0	•••	5	•••
ог Н28 ^С	0.114 0.120	40.0		00.0	•••	J	
				40.0			
H112	0.250-0.499	32.0	•••	18.0		8	•••
	0.500-2.000 2.001-3.000	30.0 30.0		11.0 11.0		11 15	
F ^D	0.250-3.000			•••			
			Alloy 54	54			
0	0.020-0.031	31.0	41.0	12.0		12	
	0.032-0.050	31.0	41.0	12.0		14	
	0.051–0.113 0.114–3.000	31.0 31.0	41.0 41.0	12.0 12.0		16 18	

Н32 ^С	0.020-0.050	36.0	44.0	26.0		5	
or	0.051-0.249	36.0	44.0	26.0		8	•••
H22 ^C	0.250-2.000	36.0	44.0	26.0		12	
H34 ^C	0.020-0.050	39.0	47.0	29.0		4	
or	0.051-0.161	39.0	47.0	29.0		6	
H24 ^C	0.162-0.249	39.0	47.0	29.0		7	
	0.250-1.000	39.0	47.0	29.0		10	

TABLE 2 Continued

_	0 17 171	Tensile St	rength, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
H112	0.250-0.499	32.0		18.0		8	
	0.500-2.000	31.0		12.0		11	
	2.001-3.000	31.0		12.0		15	
F ^C	0.250-3.000						
			Alloy 57	754			
0	0.030-0.055	29.0	39.0	12.0		17	
	0.056-0.087	29.0	39.0	12.0		18	
	0.088-0.138	29.0	39.0	12.0		19	
			Alloy 54	456			
0	0.051-1.500	42.0	53.0	19.0	30.0	16	
	1.501-3.000	41.0	52.0	18.0	30.0	16	
	3.001-5.000	40.0		17.0		14	
	5.001-7.000	39.0		16.0		14	
	7.001-8.000	38.0		15.0		12	
H32	0.188-0.499	46.0	59.0	33.0	46.0	12	
	0.500-1.500	44.0	56.0	31.0	44.0	12	•••
	1.501–3.000	41.0	54.0	29.0	43.0	12	•••
	1.501-5.000	41.0	34.0	29.0	43.0	12	
H112	0.250-1.500	42.0		19.0		12	
	1.501-3.000	41.0		18.0		12	
F ^C	0.250-8.000						
			Alloy 54	457			
0	0.030-0.090	16.0	22.0			20	
			Alloy 56	552			
0	0.051-0.113	25.0	31.0	9.5		19	0
	0.114-0.249	25.0	31.0	9.5		20	0
	0.250-3.000	25.0	31.0	9.5		18	
H32 ^D	0.051-0.113	31.0	38.0	23.0		7	2
or	0.114-0.249	31.0	38.0	23.0	•••	9	3
H22 ^D	0.250-0.499	31.0	38.0	23.0		11	
	0.500-2.000	31.0	38.0	23.0		12	
11040		04.0	44.0	00.0		6	
H34 ^D	0.051-0.113	34.0	41.0	26.0		6	3
or	0.114-0.249	34.0	41.0	26.0		7	4
H24 ^D	0.250-1.000	34.0	41.0	26.0		10	•••
H112	0.250-0.499	28.0		16.0		7	
	0.500-2.000	25.0		9.5		12	
	2.001-3.000	25.0		9.5		16	
F ^C	0.250-3.000						
			Alloy 56	657			
H241 ^G	0.030-0.090	18.0	26.0			13	
H25	0.030-0.090	20.0	28.0			8	
H26	0.030-0.090	22.0	30.0			7	
H28	0.030-0.090	25.0				5	

^A To determine conformance to this specification each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

^C Material in either of these tempers (H32 or H22), (H34 or H24), (H36 or H26), (H38 or H28), (H12 or H22), (H14 or H24), (H16 or H26), (H18 or H28), may be supplied at the option of the supplier, unless one is specifically excluded by the contract or purchase order. When ordered as H2x tempers, the maximum tensile strength and minimum yield strength do not apply. When H2x tempers are supplied instead of ordered H1x or H3x tempers, the supplied H2x temper material shall meet the respective H1x or H3x temper tensile property limits.

 $^{^{\}it D}$ Tests of F temper plate for tensile properties are not required.

E The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding alloy.

TABLE 3 Tensile Property Limits for Heat-Treatable Alloys $^{\!A,\!B}$

Temper	Specified Thickness, in.	Tensile Str	ength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in 2 in. or 4×	Bend Diameter
теттрет	opeoned Thickness, in.	min	max	min	max	Diameter, min, %	Factor, A
			Alloy 201	4			
0	0.020-0.124		32.0		16.0	16	0
	0.125-0.249		32.0		16.0	16	1
	0.250-0.499		32.0		16.0	16	2
T-0	0.000 0.000	50.0		05.0		4.4	
T3	0.020-0.039	59.0		35.0	•••	14	3 3
	0.040-0.124 0.125-0.249	59.0 59.0		36.0 36.0		14 14	3 4
	0.125-0.243	39.0		30.0	•••	14	4
T4 ^C	0.020-0.124	59.0		35.0		14	3
	0.125-0.249	59.0		35.0		14	4
- D							_
T42 ^D	0.020-0.124	58.0		34.0	•••	14	3
	0.125-0.249	58.0		34.0		14	4
	0.250-0.499	58.0		34.0		14	5
	0.500–1.000	58.0		34.0		14	
T451 ^{<i>E</i>}	0.250-1.000	58.0		36.0		14	
	1.001–2.000	58.0		36.0		12	
	2.001–3.000	57.0		36.0		8	
-							
T6, T62 ^D	0.020-0.039	64.0		57.0		6	4
	0.040-0.050	66.0		58.0		7	5
	0.051–0.124	66.0		58.0		7	6
	0.125–0.249	66.0		58.0	•••	7	8
T62 ^D , T651 ^E	0.250-0.499	67.0		59.0		7	10
	0.500-1.000	67.0		59.0		6	
	1.001-2.000	67.0		59.0		4	
	2.001-2.500	65.0		58.0		2	
	2.501-3.000	63.0		57.0		2	
	3.001-4.000	59.0		55.0		1	
F ^F	0.250-1.000						
			Alclad Alloy	2014			
O	0.020-0.499		30.0		14.0	16	
	0.500-1.000		32.0 ^{<i>G</i>}			10	
Т3	0.020-0.039	54.0		33.0		14	
	0.040-0.124	55.0		34.0		14	
	0.125–0.249	57.0		35.0		15	
T4 ^C	0.020-0.124	54.0		31.0		14	
	0.125-0.249	55.0		32.0		14	
	0.040-0.249	57.0		34.0		15	
T42 ^D	0.020-0.124	54.0		31.0		14	•••
	0.125–0.249	55.0		32.0		14	
	0.250-0.499	57.0		34.0		15	
	0.500-1.000	58.0 ^G		34.0 ^{<i>G</i>}		14	
Γ451 ^{<i>E</i>}	0.250-0.499	57.0	•••	36.0		15	
	0.500-1.000	58.0 ^G		36.0 ^{<i>G</i>}		14	
	1.001–2.000	58.0 ^G		36.0 ^{<i>G</i>}		12	
	2.001–3.000	57.0 ^G		36.0 ^{<i>G</i>}		8	
_							
T6, T62 ^D	0.020-0.039	62.0		54.0		7	
	0.040-0.050	63.0		55.0	•••	7	
	0.051-0.124	64.0		57.0		8	
	0.125–0.249	•••				•••	
Г62 ^{<i>D</i>} , Г651 ^{<i>E</i>}	0.250-0.499	64.0		57.0		8	
1001	0.500-1.000	67.0 ^G		59.0 ^{<i>G</i>}		6	
	1.001–2.000	67.0 ^G		59.0 ^{<i>G</i>}		4	
	2.001–2.500	65.0 ^G		58.0 ^{<i>G</i>}		2	
	2.501–3.000	63.0 ^G		57.0 ^{<i>G</i>}		2	
	-	59.0 ^G		55.0 ^G			

TABLE 3 Continued

		Tensile Str	rength, ksi	Yield Strength (0	0.2 % offset), ksi	Elongation in	Bend
Temper	Specified Thickness, in.	min	max	min	max	2 in. or 4× Diameter, min, %	Diameter Factor, N
F ^F	0.250-1.000				***		
			Alloy 202	24			
)	0.010-0.032		32.0		14.0	12	0
	0.033-0.063		32.0		14.0	12	1
	0.064-0.128		32.0		14.0	12	4
	0.129-0.499		32.0		14.0	12	6
Г3	0.008-0.009	63.0		42.0		10	4
	0.010-0.020	63.0		42.0		12	4
	0.021-0.051	63.0		42.0		15	5
	0.052-0.128	63.0		42.0		15	6
	0.129-0.249	64.0		42.0		15	8
Г351 ^{<i>E</i>}	0.350, 0.400	64.0		42.0		10	
1351-	0.250-0.499	64.0		42.0		12	
	0.500-1.000	63.0		42.0		8	
	1.001–1.500	62.0		42.0	•••	7	
	1.501–2.000	62.0	•••	42.0	•••	6	
	2.001–3.000 3.001–4.000	60.0 57.0		42.0 41.0		4 4	
	3.001–4.000	57.0		41.0	•••	4	
T361 ^H	0.020-0.051	67.0	***	50.0	•••	8	4
	0.052-0.062	67.0		50.0		8	8
	0.063-0.249	68.0		51.0	•••	9	8
	0.250-0.499	66.0		49.0		9	
	0.500	66.0		49.0		10	
Г4 ^С	0.010-0.020	62.0		40.0		12	4
	0.021-0.051	62.0	•••	40.0	•••	15	5
	0.052-0.128	62.0		40.0		15	6
	0.129-0.249	62.0		40.0		15	8
T42 ^D	0.010.0.020	62.0		20.0		12	4
142-	0.010-0.020			38.0			4
	0.021-0.051	62.0		38.0		15	5
	0.052-0.128	62.0		38.0		15	6
	0.129-0.249	62.0		38.0		15	8
	0.250-0.499	62.0		38.0		12	10
	0.500-1.000	61.0		38.0	•••	8	
	1.001-1.500	60.0		38.0	•••	7	
	1.501–2.000	60.0	•••	38.0	***	6	
	2.001–3.000	58.0	•••	38.0	•••	4	•••
Г62 ^{<i>D</i>}	0.010-0.499	64.0		50.0		5	
	0.500–2.000	63.0		50.0		5	
T72 ^{DI}	0.010-0.249	60.0		46.0		5	
	0.010.0.040					-	
T81	0.010-0.249	67.0	***	58.0		5	***
Г851 ^{<i>E</i>}	0.250-0.499	67.0		58.0		5	
	0.500-1.000	66.0		58.0	•••	5	
	1.001-1.499	66.0		57.0		5	
Г861 ^{<i>Н</i>}	0.020-0.062	70.0		62.0		3	
	0.063-0.249	71.0		66.0		4	•••
	0.250-0.499	70.0		64.0	•••	4	
	0.500	70.0		64.0	•••	4	
- <i>F</i>	0.050.0.000						
=F	0.250–3.000						
	0.000.000		Alclad Alloy	2024	44.5	46	
0	0.008-0.009		30.0		14.0	10	0
	0.010-0.032		30.0	•••	14.0	12	0
	0.033-0.062	•••	30.0		14.0	12	1
	0.063-0.249		32.0		14.0	12	2
	0.250-0.499		32.0		14.0	12	3
	0.500–1.750		32.0 ^{<i>G</i>}	•••	•••	12	
Г3	0.008-0.009	58.0		39.0		10	4

TABLE 3 Continued

		Tensile Str	rength, ksi	Yield Strength (0.2 % offset), ksi		Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
	0.021-0.040	59.0		39.0		15	4
	0.041-0.062	59.0		39.0		15	5
	0.063-0.128	61.0		40.0		15	5
	0.129-0.249	62.0		40.0	•••	15	8
351 ^E	0.250-0.499	62.0		40.0	***	12	
	0.500-1.000	63.0 ^G		42.0 ^G		8	
	1.001–1.500	62.0 ^G	•••	42.0 ^G	•••	7	•••
	1.501–1.500	62.0 ^G		42.0 ^G		6	
	2.001–3.000	60.0 ^G	•••	42.0 ^G	•••	4	•••
	3.001-4.000	57.0 ^G		41.0 ^G		4	
-aaH				4-0			
361 ^H	0.020-0.062	61.0		47.0		8	4
	0.063-0.187	64.0		48.0		9	6
	0.188-0.249	64.0		48.0	•••	9	8
	0.250-0.499	64.0		48.0		9	
	0.500	66.0 ^{<i>G</i>}		49.0 ^{<i>G</i>}		10	
-4 ^C	0.010-0.020	58.0		36.0		12	4
	0.021-0.040	58.0		36.0		15	4
	0.041-0.062	58.0		36.0		15	5
	0.063–0.128	61.0		38.0		15	5
-42 ^D	0.009.0.000	EE O		24.0		10	4
42	0.008-0.009	55.0 57.0		34.0	•••	10	4
	0.010-0.020	57.0		34.0		12	4
	0.021-0.040	57.0		34.0		15	4
	0.041-0.062	57.0		34.0		15	5
	0.063-0.128	60.0		36.0		15	5
	0.129-0.187	60.0		36.0		15	8
	0.188-0.249	60.0		36.0		15	8
	0.250-0.499	60.0		36.0		12	10
	0.500-1.000	61.0 ^G		38.0 ^G		8	
	1.001–1.500	60.0 ^G		38.0 ^G		7	
	1.501–2.000	60.0 ^G	•••	38.0 ^G	•••	6	•••
	2.001–3.000	58.0 ^{<i>G</i>}		38.0 ^G		4	
-62 ^D	0.010.0.000	00.0		47.0		-	
02	0.010-0.062 0.063-0.499	60.0 62.0		47.0 49.0	•••	5 5	
D /						_	
Г72 ^{<i>D,I</i>}	0.010-0.062 0.063-0.249	56.0 58.0		43.0 45.0		5 5	
	0.000 0.210	00.0		10.0	•••	Ü	•••
T81	0.010-0.062	62.0		54.0		5	
	0.063-0.249	65.0		56.0		5	
Γ851 ^{<i>E</i>}	0.050.0.400	05.0		F0.0		-	
851-	0.250-0.499	65.0		56.0		5	
	0.500-1.000	66.0 ^{<i>G</i>}		58.0 ^{<i>G</i>}		5	
⁻ 861 ^{<i>H</i>}	0.020-0.062	64.0		58.0		3	
	0.063-0.187	69.0		64.0		4	
	0.188-0.249	69.0		64.0		4	
	0.250-0.499	68.0		62.0		4	
	0.500	70.0^{G}		64.0 ^{<i>G</i>}		4	
:F	0.250-3.000						
	0.200 0.000	1	½ % Alclad All	 lov 2024	•••		***
)	0.188-0.499		32.0		14.0	12	
,	0.188-0.499		32.0 ^G			12	
ГЗ	0.188–0.249	63.0		41.0		15	
Г361	0.100 0.040	65.0		40.0		0	
JU I	0.188-0.249	65.0 65.0		49.0	•••	9	
	0.250-0.499	65.0	•••	48.0	•••	9	•••
-054 <i>E</i>	0.500	66.0 ^G		49.0 ^G		10	
351 ^E	0.250-0.499	63.0		41.0		12	
	0.500-1.000	63.0 ^G		42.0 ^G		8	
		62.0 ^{<i>G</i>}		42.0 ^G		7	
	1.001-1.500						
	1.001–1.500 1.501–2.000	62.0 ^G		42.0 ^G		6	
				42.0 ^{<i>G</i>} 42.0 ^{<i>G</i>}		6 4	

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Str		Yield Strength (0		Elongation in 2 in. or 4×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
T42 ^D	0.188-0.249	61.0		37.0		15	
	0.250-0.499	61.0		37.0		12	
	0.500-1.000	61.0 ^G		38.0 ^{<i>G</i>}		8	
		60.0 ^G		38.0 ^{<i>G</i>}			
	1.001-1.500				•••	7	
	1.501–2.000	60.0 ^G		38.0 ^{<i>G</i>}		6	
	2.001–3.000	58.0 ^{<i>G</i>}		38.0 ^{<i>G</i>}		4	
T62 ^D	0.188–0.499	62.0		49.0		5	
T72 ^{D,I}	0.188-0.249	59.0		45.0		5	
T81	0.188-0.249	66.0		57.0		5	
T851 ^E	0.250-0.499	66.0		57.0		5	
	0.500-1.000	66.0 ^G		58.0 ^G		5	
T861	0.188-0.249	70.0		65.0		4	
1001							
	0.250-0.499	69.0		63.0	•••	4	
	0.500	70.0 ^G		64.0 ^{<i>G</i>}		4	
F ^F	0.250–3.000						
		Alc	lad One-Side	Alloy 2024			
0	0.008-0.009		31.0		14.0	10	
	0.010–0.062		31.0		14.0	12	
	0.063-0.499		32.0		14.0	12	•••
	0.065-0.499	•••	32.0		14.0	12	
T3	0.010-0.020	61.0		40.0		12	
	0.021-0.062	61.0		40.0		15	
	0.063-0.128	62.0		41.0	···	15	
	0.129-0.249	63.0		41.0		15	
T351 ^E	0.250-0.499	63.0		41.0		12	
T361	0.020-0.062	64.0		48.0		8	
	0.063-0.249	66.0		49.0		9	
	0.250-0.499	65.0		48.0		9	
T42 ^D	0.010-0.020	59.0		35.0		12	
	0.021-0.062	59.0		36.0		15	
	0.063-0.249	61.0		37.0	•••	15	
	0.250-0.499	61.0		37.0		12	
T62 ^D	0.010-0.062	62.0		48.0		5	
. 02	0.063-0.249	63.0		49.0		5	
T72 ^{DI}	0.010, 0.060	50.0		44.0		5	
1/2	0.010-0.062 0.063-0.499	58.0 59.0		44.0 45.0		5 5	
T81	0.010-0.062	64.0		56.0		5	
	0.063-0.249	66.0		57.0		5	
T851 ^E	0.250-0.499	66.0		57.0		5	
T861	0.020-0.062	67.0		60.0		3	
. 50.	0.063-0.249	70.0		65.0		4	
	0.250-0.499	69.0		63.0		4	
	0.050, 0.400						
⊏ F	0.250-0.499		Alalad One Si	do Alloy 2024			
F ^F			Alclad One-Si	ue Alloy 2024			
-		1 / 2 / 0					
-	0.188–0.499		32.0	•••	14.0	12	
0	0.188-0.499 0.188-0.249		32.0	41.0	14.0	12 15	
O T3							
O T3 T351 ^E	0.188-0.249 0.250-0.499	 63.0 63.0		41.0 41.0		15 12	
O T3 T351 ^E	0.188-0.249 0.250-0.499 0.188-0.249	 63.0 63.0 66.0		41.0 41.0 49.0		15 12 9	
O T3	0.188-0.249 0.250-0.499	 63.0 63.0		41.0 41.0		15 12	
O T3 T351 ^E	0.188-0.249 0.250-0.499 0.188-0.249	 63.0 63.0 66.0		41.0 41.0 49.0		15 12 9	

Tompor	Charifical	Thickness in	Tensile Strer	ngth, ksi	Yield Strength (0.	2 % offset), ksi	Elongation in 2 in. or $4\times$	Bend Diameter
Temper	Specified	Thickness, in.	min	max	min	max	Diameter, min, %	Factor, N
T62 ^D	0.18	8-0.499	63.0		49.0		5	
T72 ^{DI}	0.18	8-0.249	59.0		45.0		5	
T81	0.18	8-0.249	66.0		57.0		5	
T851 ^{<i>E</i>}	0.25	0-0.499	66.0		57.0		5	
T861		8–0.249 0–0.499	70.0 69.0		65.0 63.0		4 4	
F ^F	0.25	0-0.499						
Temper	Specified Axis of Thickness, in. Test Specimen		Tensile Strengt	h, ksi		trength (0.2 % fset), ksi	Elongation in 2 in. or 4 × Diameter,	Bend Diamete
	THICKINGS, III.	тезт оресппен	min	max	min	max	min, %	Factor, I
				Alloy 212	4			
T851 ^E	1.000-2.000 ^J	longitudinal long transverse short transverse	66.0 66.0 64.0		57.0 57.0 55.0		6 5 1.5	
	2.001-3.000	longitudinal long transverse	65.0 65.0	 	57.0 57.0	 	5 4	
	3.001-4.000	short transverse longitudinal long transverse	63.0 65.0 65.0	 	55.0 56.0 56.0	 	1.5 5 4	
	4.001-5.000	short transverse longitudinal long transverse	62.0 64.0 64.0	 	54.0 55.0 55.0	 	1.5 5 4	
	5.001-6.000	short transverse longitudinal long transverse short transverse	61.0 63.0 63.0 58.0		53.0 54.0 54.0 51.0	 	1.5 5 4 1.5	
Temper	Sp	pecified	Tensile Strength, ks			0.2 % offset), ksi	Elongation in	Bend
·	Thic	kness, in.	min	max	min	max	2 in. or 4 × Diameter, min, %	Diamete Factor, <i>N</i>
				Alloy 221	9		111111, 70	
)	0.00	20–0.250		32.0		16.0	12	4
	0.25	51-0.750		32.0		16.0	12	6
		51–1.000		32.0		16.0	12	8
	1.00	01–2.000		32.0		16.0	12	•••
	0.02	20-0.039	46.0		29.0		8	
Γ31 ^κ (flat sheet)	0.04	10–0.249	46.0	•••	28.0		10	
Γ351 ^{E,K} plate formerly T31	0.25	50–2.000	46.0		28.0		10	
plate)		01-3.000	44.0		28.0		10	
		01-4.000	42.0		27.0		9	
)1–5.000)1–6.000	40.0 39.0		26.0 25.0		9 8	
Г37 ^К	0.02	20-0.039	49.0		38.0		6	
		10–2.500	49.0		37.0		6	
	2.50	01–3.000	47.0		36.0		6	
	3.00	01–3.000 01–4.000 01–5.000	47.0 45.0 43.0		35.0 35.0 34.0		6 5 4	

...

...

36.0 36.0

36.0

36.0

...

...

...

54.0 54.0 54.0

54.0

0.020-0.039 0.040-0.249 0.250-1.000

1.001-2.000

T62^D

...

...

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength	0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
「81 sheet	0.020-0.039	62.0		46.0		6	
	0.040-0.249	62.0		46.0		7	
⁻ 851 ^E plate formerly T81	0.250-1.000	62.0	•••	46.0		8	
plate)	1.001-2.000	62.0		46.0		7	
piato	2.001–3.000	62.0	•••	45.0		6	•••
	3.001-4.000	60.0		44.0		5	•••
	4.001–5.000						
		59.0		43.0		5	
	5.001-6.000	57.0		42.0		4	•••
⊺ 87	0.020-0.039	64.0		52.0		5	
	0.040-0.249	64.0		52.0		6	
	0.250-1.000	64.0		51.0	•••	7	
	1.001-2.000	64.0		51.0		6	
	2.001–3.000	64.0	•••	51.0		6	•••
	3.001-4.000	62.0		50.0		4	
	4.001–5.000	61.0		49.0	•••	3	
F	0.250-2.000						
			Alclad Alloy	2219			
)	0.020-0.499		32.0		16.0	12	
	0.500–2.000		32.0 ^{<i>G</i>}		16.0 ^{<i>G</i>}		
Γ31 (flat	0.040-0.099	42.0		25.0		10	
sheet) ^K	0.100-0.249	44.0		26.0		10	
351 ^{<i>E,K</i>} plate	0.050, 0.400	44.0		26.0		10	
formerly T31 plate)	0.250–0.499	44.0		26.0		10	
Г37 ^К	0.040-0.099	45.0		34.0		6	
	0.100-0.499	47.0		35.0		6	
「62 ^D	0.020-0.039	44.0		29.0		6	
102	0.040-0.099	49.0		32.0		7	
	0.100-0.249	51.0	•••	34.0	•••	7	•••
	0.250-0.499	51.0		34.0		8	
	0.500-1.000	54.0 ^{<i>G</i>}		36.0 ^{<i>G</i>}		8	
	1.001-2.000	54.0 ^{<i>G</i>}		36.0 ^{<i>G</i>}		7	
「81 (flat	0.020-0.039	49.0		37.0		6	
sheet)	0.040-0.099	55.0		41.0		7	
,	0.100-0.249	58.0		43.0		7	
851 ^E plate	0.250-0.499	58.0		42.0		8	
formerly T81 plate)	0.200 0.100	30.0		12.0		Ç	
T87	0.040-0.099	57.0		46.0		6	
	0.100-0.249	60.0		48.0		6	
	0.250-0.499	60.0		48.0		7	
:F	0.250-2.000						
			Alloy 601				
Γ4	0.020-0.249	40.0		21.0		20	
Γ 6	0.020-0.249	52.0		46.0	•••	8	
T651	0.250-1.500	53.0		44.0		5	
	1.501-3.000	54.0		47.0		5	
	3.001-6.000	55.0		47.0		4	
			Alloy 606	1			
)	0.006-0.007		22.0		12.0	10	0
	0.008-0.009		22.0		12.0	12	0
	0.010-0.020		22.0		12.0	14	0
	0.021-0.128		22.0		12.0	16	1
	0.129-0.249		22.0		12.0	18	2

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
	0.500-1.000		22.0			18	
	1.001-3.000		22.0			16	
							_
Γ4	0.006-0.007	30.0		16.0		10	2
	0.008-0.009	30.0		16.0		12	2
	0.010-0.020	30.0	•••	16.0	•••	14	2
	0.021-0.249	30.0		16.0		16	3
Γ451 ^{<i>E</i>}	0.050, 0.400	20.0		16.0		10	4
1451-	0.250-0.499	30.0		16.0		18	4
	0.500-1.000	30.0	•••	16.0		18	
	1.001-3.000	30.0	•••	16.0	•••	16	
Γ42 ^D	0.006-0.007	30.0		14.0		10	2
142	0.008-0.009	30.0	•••	14.0	***	12	2
	0.010-0.020	30.0	•••	14.0	•••	14	2
	0.021-0.249	30.0	•••	14.0	***	16	3
	0.021-0.249	30.0	•••	14.0	•••	18	4
		30.0	•••	14.0	•••	18	
	0.500-1.000 1.001-3.000	30.0	•••	14.0	•••		•••
	1.001-3.000	30.0	•••	14.0	•••	16	
Г6, Т62 ^D	0.006-0.007	42.0		35.0		4	2
10, 102	0.008-0.007	42.0 42.0	•••	35.0 35.0	•••	6	2
	0.010-0.020	42.0	•••	35.0		8	2
			•••		•••		
	0.021-0.036	42.0	•••	35.0		10	3
	0.037-0.064	42.0		35.0		10	4
	0.065-0.128	42.0		35.0		10	5
	0.129-0.249	42.0	•••	35.0	•••	10	6
FOOD TOTAE	0.050.0.400	40.0		05.0		40	-
T62 ^D , T651 ^E	0.250-0.499	42.0		35.0		10	7
	0.500-1.000	42.0		35.0	•••	9	•••
	1.001-2.000	42.0	•••	35.0	***	8	•••
	2.001-4.000	42.0	•••	35.0	•••	6	•••
	4.001–6.000 ^L	40.0		35.0	•••	6	
=F	0.250-3.000		•••				
			Alclad Alloy 6	6061			
0	0.010-0.020		20.0		12.0	14	
	0.021-0.128		20.0		12.0	16	
	0.129-0.499		20.0		12.0	18	
	0.500-1.000		22.0 ^G			18	
	1.001-3.000		22.0 ^G			16	
T4	0.010-0.020	27.0		14.0	•••	14	
	0.021-0.249	27.0		14.0		16	
Γ451 ^{<i>E</i>}	0.250-0.499	27.0		14.0	•••	18	
	0.500-1.000	30.0^{G}		16.0 ^{<i>G</i>}		18	
	1.001-3.000	30.0 ^{<i>G</i>}		16.0 ^{<i>G</i>}		16	
Γ42 ^D	0.010-0.020	27.0		12.0		14	
	0.021-0.249	27.0		12.0		16	
	0.250-0.499	27.0		12.0		18	
	0.500-1.000	30.0 ^{<i>G</i>}		14.0 ^{<i>G</i>}		18	
	1.001-3.000	30.0 ^G		14.0 ^{<i>G</i>}		16	
Γ6, T62 ^D	0.010-0.020	38.0		32.0		8	
	0.021-0.249	38.0		32.0		10	
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	38.0	•••	32.0	***	10	
	0.500-1.000	42.0 ^G	•••	35.0 ^G	***	9	•••
	1.001-2.000	42.0 ^G	•••	35.0 ^G	***	8	•••
	2.001-4.000	42.0 ^G		35.0 ^G		6	
	4 004 5 000	40.0 ^G	•••	35.0 ^{<i>G</i>}	•••	6	
	4.001-5.000						
zF	4.001–5.000 0.250–3.000						
:F			 Alloy 707				•••
	0.250–3.000		Alloy 707	5			
	0.250–3.000		Alloy 7075 40.0		21.0	10	1
F ^F	0.250–3.000		Alloy 707	5			

TABLE 3 Continued

	Temper	Specified Thickness, in.	Tensile Strength	ı, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
0.250-0.499			min	max	min	max		Factor, N
0.256-0.499		0.126-0.249		40.0		21.0	10	5
16, 500-2,000								6
16, T62 ²								
0.012-0.020 76.0 67.0 7 0.021-0.039 76.0 67.0 7 0.040-0.062 78.0 68.0 8 0.065-0.091 78.0 68.0 8 0.062-0.125 78.0 68.0 8 0.126-0.249 78.0 68.0 8 0.126-0.249 78.0 68.0 8 0.500-1.000 77.0 68.0 8 0.500-1.000 77.0 68.0 9 1.001-2.000 77.0 67.0 68.0 9 1.001-2.000 77.0 67.0 68.0 9 1.001-2.000 77.0 67.0 68.0 5 2.001-5.500 72.0 61.0 5 3.001-3.500 71.0 58.0 5 3.001-3.500 71.0 58.0 5 3.001-3.500 71.0 58.0 5 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.500 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 57.0 60.0 8 1.001-2.000 80.0 52.0 8 1.001-2.000 80.0 52.0 8 1.001-2.000 80.0 52.0 8 1.001-2.000 80.0 60.0 80.0 8 1.001-2.000 71.0 60.0 60.0 8 1.001-2.000 71.0 60.0 60.0 8 1.001-2.000 71.0 60.0 60.0 8 1.001-2.000 71.0 60.0 80.0								
0.012-0.020 76.0 67.0 7 0.021-0.039 76.0 67.0 7 0.040-0.062 78.0 68.0 8 0.040-0.062 78.0 68.0 8 0.053-0.091 78.0 68.0 8 0.126-0.249 78.0 68.0 8 0.126-0.249 78.0 68.0 8 0.500-1.000 78.0 68.0 8 0.500-1.000 77.0 68.0 9 1.001-2.000 77.0 67.0 68.0 9 1.001-2.000 77.0 67.0 68.0 5 1.001-2.000 77.0 67.0 68.0 5 2.501-3.000 72.0 61.0 5 3.001-3.500 71.0 58.0 64.0 5 2.501-3.000 72.0 61.0 5 3.001-3.500 71.0 58.0 64.0 5 1.773 sheet 0.040-0.249 67.0 56.0 8 1.77351¢ plate 0.250-1.000 89.0 57.0 6 1.001-2.000 89.0 57.0 66.0	Γ6, T62 ^D	0.008-0.011	74.0		63.0		5	7
0,021-0,039 76.0 67.0 7 0,040-0,062 78.0 68.0 8 0,063-0,091 78.0 68.0 8 0,062-0,125 78.0 68.0 8 1,092-0,125 78.0 68.0 8 1,092-0,125 78.0 68.0 8 1,002-0,249 78.0 69.0 9 1,001-2,002 78.0 69.0 9 1,001-2,000 78.0 68.0 9 1,001-2,000 77.0 68.0 9 1,001-2,000 77.0 68.0 69.0 9 1,001-2,000 77.0 68.0 69.0 9 1,001-2,000 77.0 68.0 69.0 9 1,001-2,000 77.0 68.0 69.0 57.0 69.0 57.0 69.0 59.0		0.012-0.020	76.0		67.0		7	7
0,040-0,062 78.0 68.0 8 0,040-0,062 0,063-0,091 78.0 68.0 8 0,092-0,125 78.0 68.0 8 0,092-0,125 78.0 68.0 8 0,092-0,125 78.0 69.0 8 0,092-0,125 78.0 69.0 8 0,092-0,125 78.0 69.0 69.0 9 0,000-1,000 78.0 69.0 7 0,000-1,000 78.0 68.0 7 0,000-1,000 77.0 67.0 68.0 7 0,000-1,000 77.0 67.0 67.0 67.0 5 0,000-1,000 77.0 67.0 67.0 67.0 5 0,000-1,000 77.0 67.0 67.0 5 0,000-1,000 77.0 67.0 67.0 5 0,000-1,000 77.0 67.0 67.0 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 5 0,000-1,000 6 0,000-1,000 6 0,000-1,0								8
0.089-0.091 78.0 68.0 8 0.092-0.125 78.0 68.0 8 0.126-0.249 78.0 68.0 8 0.126-0.249 78.0 69.0 8 0.126-0.249 78.0 69.0 9 0.500-1.000 78.0 68.0 9 1.001-2.000 77.0 67.0 9 2.001-2.000 77.0 67.0 68.0 9 2.001-2.000 77.0 67.0 68.0 9 2.001-2.000 77.0 68.0 57.0 6 2.501-3.000 72.0 68.0 55.0 8 0.501-4.000 67.0 58.0 55.0 8 0.501-4.000 67.0 58.0 57.0 7 1.001-2.000 69.0 57.0 66.0 8 0.501-4.000 69.0 57.0 66.0 8 0.501-4.000 69.0 57.0 66.0 8 0.501-4.000 69.0 57.0 66.0 66.0 8 0.501-4.000 69.0 57.0 66.0								8
0.092-0.125								9
1826-0249 78.0								10
T62°, T651°								11
0.500-1.000 78.0 68.0 7 1.001-2.000 77.0 67.0 6 2.001-2.500 76.0 64.0 55. 2.501-3.000 72.0 61.0 55.0 5 3.501-4.000 67.0 58.0 5 3.501-4.000 67.0 58.0 5 3.501-4.000 67.0 56.0 8 T7351 ^e plate 0.040-0.249 67.0 56.0 8 T7351 ^e plate 0.250-1.000 69.0 57.0 7 1.001-2.000 69.0 57.0 6 2.001-2.500 66.0 52.0 6 2.001-2.500 64.0 49.0 6 2.501-3.000 64.0 49.0 6 6 176 sheet 0.083-0.124 73.0 62.0 8 T7651 plate 0.250-4.000 71.0 62.0 8 T7651 plate 0.083-0.124 73.0 60.0 60.0 8 T7651 plate 0.083-0.124 73.0 60.0 60.0 8 T7651 plate 0.083-0.125 38.0 20.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.039-0.000 71.0 60.0 90.0 10 0.015-0.000 71.0 60.0 90.0 10 0.015-0.000 71.0 60.0 90.0 90.0 10 0.015-0.000 71.0 90.0 90.0 90.0 90.0 10 0.015-0.000 71.0 90.0		0.120 0.240	70.0		00.0	•••	O	
1,001-2,000 77.0 67.0 65.0 64.0 55 2,001-2,000 76.0 64.0 55 2,501-3,000 72.0 61.0 55 3,001-3,500 71.0 58.0 55 3,501-4,000 67.0 54.0 55 3,501-4,000 67.0 54.0 54.0 3 3 57.3 58.0 5 5 3,501-4,000 67.0 54.0 56.0 8 57.0 6 6 57.0 6 6 6 57.0 6	Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	78.0		67.0		9	14
2,001-2,500 76.0 64.0 5 2,501-3,000 72.0 61.0 5 3,001-3,500 71.0 58.0 5 3,001-3,500 71.0 58.0 5 3,001-3,500 71.0 58.0 5 3,501-4,000 67.0 54.0 3 T73 sheet 0.040-0,249 67.0 56.0 8 T7351 ^e plate 0.250-1,000 69.0 57.0 7 1,001-2,000 69.0 57.0 6 2,001-2,500 66.0 52.0 6 2,001-2,500 66.0 52.0 6 2,501-3,000 64.0 49.0 6 3,001-4,000 61.0 49.0 6 T76 sheet 0.063-0,124 73.0 62.0 8 T7651 plate ^e 0.250-0,499 72.0 61.0 8 T7651 plate ^e 0.250-0,499 72.0 61.0 8 T7651 plate ^e 0.250-4,000 60.0 6 T0 0.008-0,014 36.0 20.0 5 Eff 0.250-4,000 80.0 5 T6 0.150-0,100 71.0 60.0 60.0 6 T76 1,001-2,000 71.0 60.0 5 T76 1,001-2,000 71.0 60.0 10 0,008-0,1014 36.0 20.0 9 0,015-0,032 36.0 20.0 10 0,033-0,082 36.0 20.0 10 0,083-0,125 38.0 20.0 10 0,083-0,125 38.0 20.0 10 0,180-0,180-0,180 38.0 20.0 10 0,180-0,180-0,180 39.0 21.0 10 0,180-0,190 39.0 21.0 10 0,180-0,190 39.0 21.0 10 0,180-0,191 38.0 20.0 17 0,101-0,000 40.0 38.0 20.0 10 0,180-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,190 39.0 21.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,191 38.0 20.0 10 0,190-0,190 38.0 20.0 38.0 20.0 38.0 20.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.0 38.		0.500-1.000	78.0		68.0		7	
2.501-3.000 72.0 61.0 55 3.001-3.500 71.0 58.0 5 3.501-3.000 67.0 54.0 5 3.501-3.000 67.0 54.0 5 3.501-3.000 67.0 54.0 5 3.501-3.000 67.0 54.0 5 3.501-3.000 67.0 54.0 5 3.501-3.000 67.0 55.0 8 T7351¢ plate 0.250-1.000 69.0 57.0 6 2.001-2.500 66.0 57.0 6 2.201-2.500 66.0 52.0 6 2.501-3.000 64.0 49.0 6 3.001-3.000 61.0 48.0 6 3.001-3.000 61.0 48.0 6 T76 sheet 0.063-0.124 73.0 62.0 8 T7651 plate¢ 0.250-0.499 72.0 61.0 60.0 5 F* 0.250-4.000 60.0 60.0 5 F* 0.250-4.000 60.0 60.0 5 F* 0.250-4.000 86.0 20.0 9 0.015-0.032 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.126-0.187 38.0 20.0 10 0.126-0.187 38.0 20.0 10 0.126-0.199 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 20.0 7 0.012-0.020 40.0° 60.0 7 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 8 0.022-0.155 73.0 68.0° 65.0 8 0.022-0.157 73.0 68.0° 65.		1.001-2.000	77.0		67.0		6	
2.501-3.000 72.0 61.0 55 3.001-3.500 71.0 58.0 5 3.501-4.000 67.0 54.0 55 3.501-4.000 67.0 54.0 55 3.501-4.000 67.0 54.0 55 3.501-4.000 67.0 54.0 53 3.501-4.000 67.0 55.0 8 177351 ^E plate 0.250-1.000 69.0 57.0 6 2.001-2.500 66.0 57.0 6 2.201-3.000 64.0 49.0 6 2.501-3.000 64.0 49.0 6 3.001-4.000 61.0 48.0 6 3.001-4.000 61.0 48.0 62.0 8 176 sheet 0.063-0.124 73.0 62.0 8 176 sheet 0.125-0.499 72.0 61.0 88 17651 plate ^E 0.250-0.499 72.0 61.0 88 17651 plate ^E 0.250-4.000 71.0 60.0 55 F ^F 0.250-4.000 71.0 60.0 55 F ^F 0.250-4.000 71.0 60.0 55 10 0.008-0.014 36.0 20.0 10 0.015-0.032 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.126-0.187 38.0 20.0 10 0.126-0.197 38.0 20.0 10 0.126-0.197 38.0 20.0 10 0.126-0.197 38.0 20.0 10 0.126-0.199 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.126-0.187 38.0 20.0 7 0.012-0.029 40.0 40.0 58.0 58.0 59.0 8 162 ^Q , T651 ^E 0.250-0.499 39.0 66.0 7 0.012-0.029 40.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 8 0.022-0.155 73.0 65.0 8 0.022-0.157 73.0 65.0 8 0.022-0.157 73.0 65.0 8 0.022-0.150 70.0 60.0 8 0.022-0.150 70.								
3,001-3,500 71,0 58.0 5 3 3,501-4,000 67.0 54.0 3 3 1773 sheet 0,040-0,249 67.0 56.0 8 177351 [€] plate 0,250-1,000 69.0 57.0 7 1,001-2,000 69.0 57.0 6 2,001-2,500 66.0 52.0 6 2,501-3,000 64.0 49.0 6 2,501-3,000 64.0 49.0 6 3,301-4,000 61.0 49.0 6 176 sheet 0,083-0,124 73.0 62.0 8 177651 plate 0,125-0,249 73.0 62.0 8 177651 plate 0,250-0,499 72.0 61.0 8 177651 plate 0,250-0,400 60.0 6 1,001-2,000 71.0 60.0 8 177651 plate 0,250-4,000								
1773 sheet								•••
T73 sheet								***
T7351 ^F plate 0.250-1.000 69.0 0.000-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 66.0 0.001-2.500 67.0 0.001-2.0000 0.001-2.000 0.001-2.000 0.001-2.000 0.001-2.000 0.001-2.000 0.001-2.000 0.001-2.000		3.301 7.000	07.0		U 1 .0		J	•••
1.001-2.000 69.0 57.0 6 2.001-2.500 66.0 52.0 6 2.501-3.000 64.0 49.0 6 2.501-3.000 64.0 49.0 6 3.001-4.000 61.0 48.0 6 T76 sheet 0.683-0.124 73.0 62.0 8 0.125-0.249 73.0 62.0 8 T7651 plate 0.250-0.499 72.0 61.0 8 0.500-1.000 71.0 60.0 6 1.001-2.000 71.0 60.0 5 FF 0.250-4.000	Γ73 sheet	0.040-0.249	67.0		56.0		8	
1,001-2,000 69.0 57.0 6 2,001-2,500 66.0 52.0 6 2,501-3,000 64.0 49.0 6 3,001-4,000 61.0 48.0 6 T76 sheet 0.063-0,124 73.0 62.0 8 0,125-0,249 73.0 62.0 8 T7651 plate 0.250-0,499 72.0 61.0 8 0,500-1,000 71.0 60.0 6 1,001-2,000 71.0 60.0 6 1,001-2,000 71.0 60.0 6 FF 0.250-4,000	Г7351 ^E plate	0.250-1.000	69.0		57.0		7	
2 001-2 500								***
2 501-3 000 64.0 49.0 6 3 001-4 000 61.0 48.0 6 176 sheet 0.63-0.124 73.0 62.0 8 17651 plate								
3.001-4.000 61.0 48.0 6 T76 sheet 0.063-0.124 73.0 62.0 8 T7651 plate								•••
T76 sheet 0.063-0.124 73.0 62.0 8 0.125-0.249 73.0 62.0 8 17651 plate ^E 0.250-0.499 72.0 61.0 8 0.500-1.000 71.0 60.0 6 1.001-2.000 71.0 60.0 5 =F 0.250-4.000								
0.125-0.249 73.0 62.0 8 17651 plate 0.250-0.499 72.0 61.0 8 0.500-1.000 71.0 60.0 5 1.001-2.000 71.0 60.0 5 2		3.001-4.000	01.0	•••	40.0	•••	O	***
T7651 plate ^E 0.250-0.499 72.0 61.0 8 0.500-1.000 71.0 60.0 6 1.001-2.000 71.0 60.0 5 FF 0.250-4.000	Γ76 sheet	0.063-0.124	73.0		62.0		8	
0.500−1.000 71.0 60.0 6 1.001−2.000 71.0 60.0 5 FF 0.250−4.000		0.125-0.249	73.0	•••	62.0	•••	8	•••
0.500−1.000 71.0 60.0 6 1.001−2.000 71.0 60.0 5 FF	TZCE1 mlotoF	0.050, 0.400	70.0		61.0		0	
FF 0.250-4.000 71.0 60.0 5 FF 0.250-4.000	17651 plate-			•••				
Alclad Alloy 7075 O 0.008-0.014 36.0 20.0 9 0.015-0.032 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.126-0.187 38.0 20.0 10 0.128-0.499 38.0 20.0 10 0.500-1.000 40.0 ⁶ 10 0.012-0.020 70.0 40.0 ⁶ 10 0.012-0.020 70.0 60.0 7 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 63.0 88 0.092-0.125 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 65.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 63.0 88 0.126-0.187 73.0 64.0 65.0 85 0.180-0.249 75.0 64.0 55.0 55 0.500-1.000 77.0 ⁶ 64.0 55 0.500-1.000 77.0 ⁶ 67.0 ⁶ 55 0.500-1.000 77.0 ⁶ 61.0 ⁶ 55 0.500-1.000 77.0 ⁶ 61.0 ⁶ 55 0.500-1.000 77.0 ⁶ 58.0 ⁶ 58.0 55 0.000-1.000 77.0 ⁶ 58.0 .				•••		***		•••
Alclad Alloy 7075 O 0.008-0.014 36.0 20.0 9 0.015-0.032 36.0 20.0 10 0.033-0.062 36.0 20.0 10 0.063-0.125 38.0 20.0 10 0.126-0.187 38.0 20.0 10 0.188-0.249 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.500-1.000 40.0 ⁶ 10 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.021-0.039 70.0 63.0 8 0.063-0.091 73.0 63.0 8 0.092-0.125 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.188-0.249 75.0 64.0 8 T62 ⁰ , T651 ^E 0.250-0.499 75.0 65.0 9 0.500-1.000 77.0 ⁶ 65.0 9 0.500-1.000 77.0 ⁶ 65.0 9 0.500-1.000 77.0 ⁶ 67.0 ⁶ 6 2.001-2.500 76.0 ⁶ 64.0 ⁶ 5 2.501-3.000 72.0 ⁶ 64.0 ⁶ 5 3.001-3.500 71.0 ⁶ 65.0 5 3.001-3.500 71.0 ⁶ 68.0 ⁶ 5 3.501-4.000 67.0 ⁶ 68.0 ⁶ 5 3.501-4.000 67.0 ⁶ 68.0 ⁶ 5 3.501-4.000 67.0 ⁶ 68.0 57.0 8 0.126-0.187 68.0 57.0 8		1.001-2.000	/1.0		60.0		5	•••
O	=F	0.250-4.000					•••	
0.015-0.032				Alclad Alloy	7075			
0.033-0.062)			36.0		20.0	9	1
0.063-0.125 38.0 20.0 10 0.126-0.187 38.0 20.0 10 0.188-0.249 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.500-1.000 40.0 ⁶ 10 0.500-1.000 40.0 ⁶ 58.0 55 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 63.0 8 0.126-0.187 73.0 63.0 8 0.188-0.249 75.0 63.0 8 0.188-0.249 75.0 66.0 8 0.500-1.000 77.0 ⁶ 66.0 9 0.500-1.000 77.0 ⁶ 66.0 9 0.501-3.500 71.0 ⁶ 67.0 ⁶ 55 3.501-4.000 67.0 ⁶ 67.0 ⁶ 67.0 ⁶ 55 3.501-4.000 67.0 ⁶ 56.0 8 0.125-0.187 68.0 57.0 8 0.125-0.187 68.0 57.0 8		0.015-0.032		36.0		20.0	10	1
0.126-0.187		0.033-0.062		36.0		20.0	10	2
0.188-0.249 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.500-1.000 40.0 ^G 10 0.500-1.000 40.0 ^G 11 0.008-0.011 68.0 58.0 5 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 62.0 8 0.092-0.125 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.128-0.249 75.0 64.0 8 0.188-0.249 75.0 65.0 9 0.500-1.000 77.0 ^G 65.0 9 0.500-1.000 77.0 ^G 67.0 ^G 67.0 ^G 5 2.501-3.000 72.0 ^G 61.0 ^G 5 3.001-3.500 71.0 ^G 58.0 ^G 5 3.501-4.000 67.0 ^G 56.0 5 0.063-0.124 68.0 57.0 8 0.125-0.187 68.0 57.0 8 0.125-0.187 68.0 57.0 8		0.063-0.125		38.0		20.0	10	3
0.188-0.249 39.0 21.0 10 0.250-0.499 39.0 21.0 10 0.500-1.000 40.0 ^G 10 0.008-0.011 68.0 58.0 5 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 62.0 8 0.063-0.091 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.128-0.249 75.0 64.0 8 0.500-1.000 77.0 ^G 65.0 8 0.500-1.000 77.0 ^G 65.0 9 0.500-1.000 77.0 ^G 67.0 ^G 5 0.201-3.000 72.0 ^G 61.0 ^G 5 0.501-3.000 71.0 ^G 58.0 ^G 5 0.500-1.000 77.0 ^G 61.0 ^G 5 0.501-3.000 72.0 ^G 61.0 ^G 5 0.501-3.000 71.0 ^G 58.0 ^G 5 0.500-1.000 71.0 ^G 58.0 ^G 5 0.500-1.000 71.0 ^G 58.0 ^G 5 0.501-3.000 72.0 ^G 61.0 ^G 5 0.501-3.000 72.0 ^G 61.0 ^G 5 0.500-1.000 71.0 ^G 58.0 ^G 5 0.500-1.000 71.0 ^G 58.0 ^G 5 0.501-3.000 72.0 ^G 61.0 ^G 5 0.501-3.000 72.0 ^G 61.0 ^G 5 0.063-0.124 68.0 57.0 8 0.125-0.187 68.0 57.0 8		0.126-0.187		38.0		20.0	10	4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								6
T6, T62D 0.008-0.011 68.0 58.0 5 0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 62.0 8 0.063-0.091 73.0 63.0 8 0.092-0.125 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.188-0.249 75.0 64.0 8 T62D, T651E 0.250-0.499 75.0 65.0 9 0.500-1.000 78.0G 68.0G 7 1.001-2.000 77.0G 67.0G 6 2.501-3.000 72.0G 61.0G 5 2.501-3.000 72.0G 61.0G 5 3.001-3.500 71.0G 58.0G 5								
0.012-0.020 70.0 60.0 7 0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 62.0 8 0.063-0.091 73.0 63.0 8 0.092-0.125 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.126-0.187 75.0 63.0 8 0.188-0.249 75.0 64.0 9 0.500-1.000 78.0 65.0 9 0.500-1.000 77.0 65.0 9 1.001-2.000 77.0 67.0 67.0 67.0 6 2.001-2.500 76.0 67.0 64.0 5 2.501-3.000 72.0 61.0 58.0 5 3.001-3.500 71.0 58.0 5 3.501-4.000 67.0 56.0 3 T76 sheet 0.040-0.062 67.0 56.0 8 0.125-0.187 68.0 57.0 8 0.125-0.187 68.0 57.0 8	Γ6 Τ62 ^D			40.0				6
0.021-0.039 70.0 60.0 7 0.040-0.062 72.0 62.0 8 0.063-0.091 73.0 63.0 8 0.092-0.125 73.0 63.0 8 0.126-0.187 73.0 63.0 8 0.188-0.249 75.0 63.0 8 0.188-0.249 75.0 65.0 8 0.500-1.000 78.0 ^G 68.0 ^G 7 1.001-2.000 77.0 ^G 67.0 ^G 6 2.501-2.500 76.0 ^G 64.0 ^G 5 2.501-3.000 72.0 ^G 61.0 ^G 5 3.001-3.500 71.0 ^G 58.0 ^G 5 3.501-4.000 67.0 ^G 56.0 8 176 sheet 0.040-0.062 67.0 56.0 8	10, 102			***		***		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						•••		7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				***		***		8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.092-0.125						9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.126-0.187	73.0		63.0		8	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.188-0.249	75.0		64.0	•••	8	10
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Γ62 ^D . Τ651 ^E	0.250-0 499	75.0		65.0		9	12
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					68 n ^G			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$								•••
3.501-4.000 67.0 ^G 54.0 ^G 3 F76 sheet 0.040-0.062 67.0 56.0 8 0.063-0.124 68.0 57.0 8 0.125-0.187 68.0 57.0 8								
T76 sheet 0.040-0.062 67.0 56.0 8 0.063-0.124 68.0 57.0 8 0.125-0.187 68.0 57.0 8								
0.063-0.124 68.0 57.0 8 0.125-0.187 68.0 57.0 8 0.128, 0.040 70.0 57.0 8								
0.125-0.187 68.0 57.0 8	Γ76 sheet							
0.100, 0.040				***		***		•••
0.188–0.249 70.0 59.0 8								
		0.188-0.249	70.0		59.0		8	
T7651 ^E plate 0.250-0.499 69.0 58.0 8	Γ7651 ^E nlate	0 250_0 400	60.0		58.0		Ω	
17651- plate $0.250-0.499$ 69.0 58.0 8 $0.500-1.000$ 71.0^G 60.0^G 6	7001 plate							

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength	, ksi	Yield Strength	(0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, /
F	0.250-4.000						
		A	Iclad One Side A	dloy 7075			
)	0.015-0.032		38.0		21.0	10	1
	0.033-0.062		38.0		21.0	10	2
	0.063-0.091		39.0		21.0	10	3
	0.092-0.125		39.0		21.0	10	4
	0.126-0.187		39.0		21.0	10	5
	0.188-0.249		39.0		21.0	10	5
	0.250-0.499		39.0	•••	21.0	10	6
	0.500-1.000		40.0 ^G			10	
Г6, Т62 ^D	0.008-0.011	71.0		60.0		5	
10, 102			•••				
	0.012-0.014	74.0		64.0	•••	8	
	0.015-0.032	74.0		64.0	•••	8	7
	0.033-0.039	74.0		64.0		8	8
	0.040-0.062	75.0		65.0		9	8
	0.063-0.091	76.0		66.0		9	9
	0.092-0.125	76.0		66.0	***	9	10
	0.126-0.187	77.0		67.0		9	11
	0.188-0.249	78.0		67.0		9	11
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.250-0.499	76.0		66.0		9	13
	0.500-1.000	78.0 ^G	•••	68.0 ^G	***	7	
	1.001–2.000	77.0 ^G		67.0 ^G		6	
=F	0.250, 2.000						
	0.250-2.000	•••	7000 Alalad Alla		•••	•••	•••
			7008 Alclad Allo	ny 7075			
)	0.015-0.499		40.0		21.0	10	
	0.500–2.000		40.0 ^G			10	
Γ6, T62 ^D	0.015-0.039	73.0		63.0		7	
	0.040-0.187	75.0		65.0		8	
	0.188-0.249	76.0		66.0		8	
Г62 ^{<i>D</i>} , Т651 ^{<i>E</i>}	0.050, 0.400	76.0		66.0		9	
102 , 1031	0.250-0.499	76.0 78.0 ^{<i>G</i>}	•••	66.0			
	0.500-1.000		•••	68.0 ^{<i>G</i>}	•••	7	•••
	1.001–2.000	77.0 ^G		67.0 ^G	•••	6	
	2.001-2.500	76.0 ^{<i>G</i>}		64.0 ^G		5	
	2.501-3.000	72.0 ^{<i>G</i>}		61.0 ^{<i>G</i>}		5	
	3.001-3.500	71.0 ^{<i>G</i>}		58.0 ^{<i>G</i>}		5	
	3.501-4.000	67.0 ^{<i>G</i>}		54.0^{G}		3	
Γ76 sheet	0.040-0.062	70.0		59.0		8	
	0.063-0.187	71.0		60.0		8	
	0.188-0.249	72.0		61.0		8	
	0.100 0.240		•••	01.0		J	•••
Г7651 ^E plate	0.250-0.499	71.0		60.0	•••	8	
	0.500-1.000	71.0 ^{<i>G</i>}		60.0 ^{<i>G</i>}		6	
=F	0.250-4.000		***				•••
			Alloy 717	8			
)	0.015-0.499		40.0		21.0	10	
	0.500		40.0			10	
Г6, Т62 ^D	0.015-0.044	83.0		72.0		7	
,	0.045-0.249	84.0		73.0		8	
FCOD TOE 1 F	0.050.0.400	04.0		70.0		2	
Г62 ^{<i>D</i>} ,Т651 ^{<i>E</i>}	0.250-0.499	84.0	•••	73.0	•••	8	
	0.500-1.000	84.0		73.0	•••	6	
	1.001-1.500 1.501-2.000	84.0 80.0		73.0 70.0		4 3	
	2.000		•••	70.0			
	0.045-0.249	75.0		64.0		8	
Т76							
	0.250-0.499	74 0		63.0		8	
Г76 Г7651 ^Е	0.250-0.499 0.500-1.000	74.0 73.0		63.0 62.0		8 6	

TABLE 3 Continued

Temper	Specified Thickness, in.	Tensile Strength,	ksi	Yield Strength (0.2 % offset), ksi	Elongation in 2 in. or 4 ×	Bend Diameter
		min	max	min	max	Diameter, min, %	Factor, N
0	0.015-0.062		36.0		20.0	10	
	0.063-0.187		38.0		20.0	10	
	0.188-0.499		40.0		21.0	10	
	0.500	•••	40.0 ^G			10	
T6, T62 ^D	0.015-0.044	76.0		66.0		7	
-, -	0.045-0.062	78.0		68.0		8	
	0.063-0.187	80.0		70.0		8	•••
	0.188-0.249	82.0		71.0		8	
T62 ^D , T651 ^E	0.250-0.499	82.0		71.0		8	
.02 , .00.	0.500-1.000	84.0 ^G		73.0 ^G		6	
	1.001-1.500	84.0 ^{<i>G</i>}		73.0 ^G		4	
	1.501–2.000	80.0 ^G		70.0 ^G		3	
T76	0.045-0.062	71.0		60.0		8	
170	0.063-0.187	71.0	•••	60.0		8	•••
	0.188–0.249	73.0		61.0		8	
T7651 ^E	0.250-0.499	72.0		60.0		8	
17001	0.500-1.000	73.0 ^G		62.0 ^G		6	
F ^F	0.250-2.000						

^A To determine conformance to this specification, each value for tensile strength and yield strength shall be rounded to the nearest 0.1 ksi and each value for elongation to the nearest 0.5 %, both in accordance with the rounding method of Practice E 29.

^B The basis for establishment of mechanical property limits is shown in Annex A1.

 $^{^{\}it C}$ Coiled sheet.

 $^{^{}D}$ Material in the T42, T62, and T72 tempers is not available from the material producer.

^E For stress-relieved tempers (T351, T451, T651, T7351, T7651, and T851), characteristics and properties other than those specified may differ somewhat from the corresponding characteristics and properties of material in the basic temper.

^F Test for tensile properties in the F temper are not required.

^G The tension test specimen from plate 0.500 in. and thicker is machined from the core and does not include the cladding.

^H Applicable to flat sheet and plate only.

^{&#}x27;The T72 temper is applicable only to Alloys 2024 and Alclad 2024 sheet solution heat treated and artificially overaged by the user to develop increased resistance to stress-corrosion cracking.

^JShort transverse tensile property limits are not applicable to material less than 1.500 in. in thickness.

^κUse of Alloys 2219 and Alclad 2219 in the T31, T351, and T37 tempers for finished products is not recommended.

^L The properties for this thickness apply only to the T651 temper.

TABLE 4 Lot Acceptance Criteria for Resistance to Stress Corrosion and Exfoliation Corrosion

		Lot Acceptance Criteria	l -4 A4
Alloy and Temper	Electrical Conductivity, ^A %, IACS	Level of Mechanical Properties	Lot Acceptance Status
7075-T73 and T7351	40.0 or greater	per specified requirements	acceptable
	38.0 through 39.9	per specified requirements but yield strength does not exceed minimum by more than 11.9 ksi	acceptable
	38.0 through 39.9	per specified requirements but yield strength exceeds minimum by 12.0 ksi or more	unacceptable ^B
	less than 38.0	any level	unacceptable ^B
7075-T76 and T7651 Alclad 7075-T76 and T7651	38.0 or greater 36.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable ^B
and 7008 Alclad 7075-T76 and -T7651	less than 36.0	any level	unacceptable ^B
7178-T76 and T7651 Alclad 7178-T76 and T7651	38.0 or greater 35.0 through 37.9	per specified requirements per specified requirements	acceptable unacceptable B

^A The electrical conductivity shall be determined in accordance with Practice E 1004 in the following locations:

Alloy-Temper Thickness, in. Location 7075-T73 and T7351 surface of tension-test sample all

up through 0.100 7075-T76 and T7651) 7178-T76 and T7651 0.101 and over

surface of tension-test sample sub-surface after removal of approximately 10 % of the thickness

For alcad products, the cladding must be removed and the electrical conductivity determined on the core alloy.

TABLE 5 Components of Clad Products

	Component Alloys ^A		Total Composite Thickness		Cladding Thick of Com	kness per S posite Thick	
Alloy	Core Cladding		of Finished Sheet and Plate, in.	Sides Clad	Nominal -	Average ^B	
			and riate, in		Nominai -	min	max
Alclad 2014	2014	6003	up through 0.024	both	10	8	
			0.025-0.039	both	7.5	6	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Alclad 2024	2024	1230	up through 0.062	both	5	4	
			0.063 and over	both	2.5	2	
1/2 % Alclad 2024	2024	1230	0.188 and over	both	1.5	1.2	3^{C}
Iclad one-side 2024	2024	1230	up through 0.062	one	5	4	
			0.063 and over	one	2.5	2	
1/2 % Alclad one-side 2024	2024	1230	0.188 and over	one	1.5	1.2	3 ^C
Alclad 2219	2219	7072	up through 0.039	both	10	8	
			0.040-0.099	both	5	4	
			0.100 and over	both	2.5	2	
Ilclad 3003	3003	7072	all	both	5	4	6^D
Iclad 3004	3004	7072	all	both	5	4	6^D
Alclad 6061	6061	7072	all	both	5	4	6^D
Ilclad 7075 and	7075	7072	(up through 0.062	both	4	3.2	
7008 Alclad 7075	7075	7008	0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C
Iclad one-side 7075	7075	7072	up through 0.062	one	4	3.2	
			0.063-0.187	one	2.5	2	
			0.188 and over	one	1.5	1.2	3 ^C
Alclad 7178	7178	7072	(up through 0.062	both	4	3.2	
			0.063-0.187	both	2.5	2	
			0.188 and over	both	1.5	1.2	3 ^C

A Cladding composition is applicable only to the aluminum alloy bonded to the alloy ingot or slab preparatory to rolling to the specified composite product. The composition of the cladding may be altered subsequently by diffusion between the core and cladding due to thermal treatment.

^B When material is found to be unacceptable, it shall be reprocessed (additional precipitation heat treatment or re-solution heat treatment, stress relieving and precipitation heat treatment, when applicable).

^B Average thickness per side as determined by averaging cladding thickness measurements when determined in accordance with the procedure specified in 15.2.

^C For thicknesses of 0.500 in. and over with 1.5 % of nominal cladding thickness, the average maximum thickness of cladding per side after rolling to the specified thickness of plate shall be 3 % of the thickness of the plate as determined by averaging cladding thickness measurements taken at a magnification of 100 diameters on the cross section of a transverse sample polished and etched for examination with a metallurgical microscope.

^D Applicable for thicknesses of 0.500 in. and greater.

TABLE 6 Ultrasonic Discontinuity Limits for Plate^A

Alloy	Thickness, in.	Maximum Weight Per Piece, lb ^B	Discontinuity Class ^C
2014 ^D 2024 ^D	0.500-1.499	2000	В
2124 2219 ^D	1.500–3.000	2000	Α
7075 ^D 7178 ^D	3.001-6.000	2000	В

A Discontinuities in excess of those listed in this table shall be allowed if it is established that they will be removed by machining or that they are in noncritical areas.

ANNEXES

(Mandatory Information)

A1. BASIS FOR INCLUSION OF PROPERTY LIMITS

A1.1 Limits are established at a level at which a statistical evaluation of the data indicates that 99 % of the population obtained from all standard material meets the limit with 95 % confidence. For the products described, mechanical property limits for the respective size ranges are based on the analyses of at least 100 data from standard production material with no

more than ten data from a given lot. All tests are performed in accordance with the appropriate ASTM test methods. For informational purposes, refer to "Statistical Aspects of Mechanical Property Assurance" in the Related Material section of the *Annual Book of ASTM Standards*, Vol 02.02.

A2. ACCEPTANCE CRITERIA FOR INCLUSION OF NEW ALUMINUM AND ALUMINUM ALLOYS IN THIS SPECIFICATION

- A2.1 Prior to acceptance for inclusion in this specification, the composition of wrought or cast aluminum or aluminum alloy shall be registered in accordance with ANSI H35.1/H35.1(M). The Aluminum Association⁷ holds the Secretariat of ANSI H35 Committee and administers the criteria and procedures for registration.
- A2.2 If it is documented that the Aluminum Association could not or would not register a given composition, an alternative procedure and the criteria for acceptance shall be as follows:
- A2.2.1 The designation submitted for inclusion does not utilize the same designation system as described in ANSI H35.1/H35.1(M). A designation not in conflict with other designation systems or a trade name is acceptable.
- A2.2.2 The aluminum or aluminum alloy has been offered for sale in commercial quantities within the prior twelve months to at least three identifiable users.
- A2.2.3 The complete chemical composition limits are submitted.
- A2.2.4 The composition is, in the judgment of the responsible subcommittee, significantly different from that of any other aluminum or aluminum alloy already in the specification.

- A2.2.5 For codification purposes, an alloying element is any element intentionally added for any purpose other than grain refinement and for which minimum and maximum limits are specified. Unalloyed aluminum contains a minimum of 99.00 % aluminum.
- A2.2.6 Standard limits for alloying elements and impurities are expressed to the following decimal places:

Less than 0.001 %	0.000X
0.001 to but less than 0.01 %	0.00X
0.01 to but less than 0.10 %	
Unalloyed aluminum made by a refining process	0.0XX
Alloys and unalloyed aluminum not made by a refining process	0.0X
0.10 through 0.55 %	0.XX
(It is customary to express limits of 0.30 through 0.55 % as	
0.X0 or 0.X5.)	
Over 0.55 %	0.X, X.X, and
	so forth

(except that combined Si + Fe limits for 99.00 % minimum aluminum must be expressed as 0.XX or 1.XX)

A2.2.7 Standard limits for alloying elements and impurities are expressed in the following sequence: Silicon; Iron; Copper; Manganese; Magnesium; Chromium; Nickel; Zinc (Note A2.1); Titanium; Other Elements, Each; Other Elements, Total; Aluminum (Note A2.2).

Note A2.1—Additional specified elements having limits are inserted in alphabetical order of their chemical symbols between zinc and titanium, or are specified in footnotes.

Note A2.2—Aluminum is specified as *minimum* for unalloyed aluminum and as a *remainder* for aluminum alloys.

^B The maximum weight is either the ordered weight of a plate of rectangular shape or the planned weight of a rectangular plate prior to removing metal to produce a part or plate shape to a drawing.

^C The discontinuity class limits are defined in Section 11 of Practice B 594.

^D Also applies for alclad plate.

 $^{^7\,\}mathrm{The}$ Aluminum Association Inc., Suite 600, Arlington, VA 22209 or www.aluminum.org.

SUMMARY OF CHANGES

Committee B07 has identified the location of selected changes to this standard since the last issue (B 209 – 04) that may impact the use of this standard. (Approved in July 2006.)

(1) Section 2.2: Added ASTM B 947 Hot Rolling Mill Solution Heat Treatment for Aluminum Alloy Plate.

(2) Revised Section 8 to allow Rolling Mill Solution Heat Treatment.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every five years and if not revised, either reapproved or withdrawn. Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters. Your comments will receive careful consideration at a meeting of the responsible technical committee, which you may attend. If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards, at the address shown below.

This standard is copyrighted by ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, United States. Individual reprints (single or multiple copies) of this standard may be obtained by contacting ASTM at the above address or at 610-832-9585 (phone), 610-832-9555 (fax), or service@astm.org (e-mail); or through the ASTM website (www.astm.org).